References
- Barnett, V. (1976). The ordering of multivariate data. (with discussion), Journal of the Royal Statistical Society, Series A, 139, 318-339. https://doi.org/10.2307/2344839
- Buchta, C. (2005). An identity relating moments of functionals of convex hulls, Discrete Computational Geometry, 33, 125-142. https://doi.org/10.1007/s00454-004-1109-3
- Buchta, C. (2006). The exact distribution of the number of vertices of a random convex chain, Mathematika, 53, 247-254. https://doi.org/10.1112/S0025579300000127
- Cook, R. D. (1979). Influential observations in linear regression, Journal of the American Statistical Association, 74, 169-174. https://doi.org/10.1080/01621459.1979.10481634
- Efron, B. (1965). The convex hull of random set of points, Biometrika, 52, 331-343. https://doi.org/10.1093/biomet/52.3-4.331
- Fawcett, T. and Niculescu-Mizil, A. (2007). PAV and the ROC convex hull, Machine Learning, 68, 97-106. https://doi.org/10.1007/s10994-007-5011-0
- Hsing, T. (1994). On the asymptotic distribution of the area outside a random convex hull in a disk, Annals of Applied Probability, 4, 478-493. https://doi.org/10.1214/aoap/1177005069
- Hueter, I. (1994). The convex hull of normal samples, Journal of Applied Probability, 26, 855-875. https://doi.org/10.2307/1427894
- Hueter, I. (1999). Limit theorems for the convex hull of random points in higher dimensions, Transactions of the American Mathematical Society, 351, 4337-4363. https://doi.org/10.1090/S0002-9947-99-02499-X
- Jeong, S. (2004). Asymptotic distribution of DEA efficiency scores, Journal of Korean Statistical Society, 33, 449-458.
- Jeong, S. and Park, B. U. (2006). Large sample approximation of the distribution for convex hull estimators of boundaries, Scandinavian Journal of Statistics, 33, 139-151. https://doi.org/10.1111/j.1467-9469.2006.00452.x
- Lim, J. and Won, J. (2012). ROC convex hull and nonparametric maximum likelihood estimation, Machine Learning, 88, 433-444. https://doi.org/10.1007/s10994-012-5290-y
- Ng, C. T., Lim, J., Lee, K. E., Yu, D. and Choi, S. (2014). A fast algorithm to sample the number of vertexes and the area of the random convex hull on the unit square, Computational Statistics, 29, 1187-1205. https://doi.org/10.1007/s00180-014-0486-1
- Renyi, A. and Sulanke, R. (1963a). Uber die knovexe Hulle von n zufallig gewahlten Punkten, Zeitschrift fur Wahrscheinlichkeitstheorie und verwandte Gebiete, 2, 75-84. https://doi.org/10.1007/BF00535300
- Renyi, A. and Sulanke, R. (1963b). Uber die knovexe Hulle von n zufallig gewahlten Punkten, Zeitschrift fur Wahrscheinlichkeitstheorie und verwandte Gebiete, 3, 138-147.
- Santalo, L. A. (1953). Introduction to integral geometry, Actualities Scientifiques et Industrielles, 1198, Hermann, Paris.
Cited by
- Independence and maximal volume of d-dimensional random convex hull vol.25, pp.1, 2018, https://doi.org/10.29220/CSAM.2018.25.1.079