DOI QR코드

DOI QR Code

A New Integral Representation of the Coverage Probability of a Random Convex Hull

  • Son, Won (Department of Statistics, Seoul National University) ;
  • Ng, Chi Tim (Department of Statistics, Chonnam National University) ;
  • Lim, Johan (Department of Statistics, Seoul National University)
  • Received : 2014.11.25
  • Accepted : 2014.12.30
  • Published : 2015.01.31

Abstract

In this paper, the probability that a given point is covered by a random convex hull generated by independent and identically-distributed random points in a plane is studied. It is shown that such probability can be expressed in terms of an integral that can be approximated numerically by function-evaluations over the grid-points in a 2-dimensional space. The new integral representation allows such probability be computed efficiently. The computational burdens under the proposed integral representation and those in the existing literature are compared. The proposed method is illustrated through numerical examples where the random points are drawn from (i) uniform distribution over a square and (ii) bivariate normal distribution over the two-dimensional Euclidean space. The applications of the proposed method in statistics are are discussed.

Keywords

References

  1. Barnett, V. (1976). The ordering of multivariate data. (with discussion), Journal of the Royal Statistical Society, Series A, 139, 318-339. https://doi.org/10.2307/2344839
  2. Buchta, C. (2005). An identity relating moments of functionals of convex hulls, Discrete Computational Geometry, 33, 125-142. https://doi.org/10.1007/s00454-004-1109-3
  3. Buchta, C. (2006). The exact distribution of the number of vertices of a random convex chain, Mathematika, 53, 247-254. https://doi.org/10.1112/S0025579300000127
  4. Cook, R. D. (1979). Influential observations in linear regression, Journal of the American Statistical Association, 74, 169-174. https://doi.org/10.1080/01621459.1979.10481634
  5. Efron, B. (1965). The convex hull of random set of points, Biometrika, 52, 331-343. https://doi.org/10.1093/biomet/52.3-4.331
  6. Fawcett, T. and Niculescu-Mizil, A. (2007). PAV and the ROC convex hull, Machine Learning, 68, 97-106. https://doi.org/10.1007/s10994-007-5011-0
  7. Hsing, T. (1994). On the asymptotic distribution of the area outside a random convex hull in a disk, Annals of Applied Probability, 4, 478-493. https://doi.org/10.1214/aoap/1177005069
  8. Hueter, I. (1994). The convex hull of normal samples, Journal of Applied Probability, 26, 855-875. https://doi.org/10.2307/1427894
  9. Hueter, I. (1999). Limit theorems for the convex hull of random points in higher dimensions, Transactions of the American Mathematical Society, 351, 4337-4363. https://doi.org/10.1090/S0002-9947-99-02499-X
  10. Jeong, S. (2004). Asymptotic distribution of DEA efficiency scores, Journal of Korean Statistical Society, 33, 449-458.
  11. Jeong, S. and Park, B. U. (2006). Large sample approximation of the distribution for convex hull estimators of boundaries, Scandinavian Journal of Statistics, 33, 139-151. https://doi.org/10.1111/j.1467-9469.2006.00452.x
  12. Lim, J. and Won, J. (2012). ROC convex hull and nonparametric maximum likelihood estimation, Machine Learning, 88, 433-444. https://doi.org/10.1007/s10994-012-5290-y
  13. Ng, C. T., Lim, J., Lee, K. E., Yu, D. and Choi, S. (2014). A fast algorithm to sample the number of vertexes and the area of the random convex hull on the unit square, Computational Statistics, 29, 1187-1205. https://doi.org/10.1007/s00180-014-0486-1
  14. Renyi, A. and Sulanke, R. (1963a). Uber die knovexe Hulle von n zufallig gewahlten Punkten, Zeitschrift fur Wahrscheinlichkeitstheorie und verwandte Gebiete, 2, 75-84. https://doi.org/10.1007/BF00535300
  15. Renyi, A. and Sulanke, R. (1963b). Uber die knovexe Hulle von n zufallig gewahlten Punkten, Zeitschrift fur Wahrscheinlichkeitstheorie und verwandte Gebiete, 3, 138-147.
  16. Santalo, L. A. (1953). Introduction to integral geometry, Actualities Scientifiques et Industrielles, 1198, Hermann, Paris.

Cited by

  1. Independence and maximal volume of d-dimensional random convex hull vol.25, pp.1, 2018, https://doi.org/10.29220/CSAM.2018.25.1.079