References
- Arai, K. and Barakbah, A. R. (2007). Hierarchical K-means: an algorithm for centroids initialization for K-means, Reports of the Faculty of Science and Engineering, Saga University, 36, 25-31.
- Banfield, J. D. and Raftery, A. E. (1993). Model-based Gaussian and non-Gaussian clustering, Biometrics, 49, 803-821. https://doi.org/10.2307/2532201
- Bartkowiak, A. (2005). Robust Mahalanobis distances obtained using the 'Multout'; and "Fast-mcd' Methods, Biocybernetics and Biomedical Engineering, 25, 7-21.
- Brusco, M. J. and Cradit, J. D. (2001). A variable-selection heuristic for K-means clustering, Pychometrika, 66, 249-270. https://doi.org/10.1007/BF02294838
- Carmone, F. J., Kara, A. and Maxwell, S. (1999). HINoV; A new model to improve market segmentation by identifying noisy variables, Journal of Marketing Research, 36, 501-509. https://doi.org/10.2307/3152003
- Everitt, B. S., Landau, S. and Leese, M. (2001). Cluster Analysis, Arnold.
- Filzmoser, P. and Varmuza, K. (2013). Package Chemometrics. Documentation available at: http:// cran.r-project.org/web/packages/chemometrics/index.html.
- Fowlkes, E. B., Gnanadesikan, R. and Kettenring, J. R. (1988). Variable selection in clustering, Journal of Classification, 5, 205-228. https://doi.org/10.1007/BF01897164
- Fowlkes, E. B. and Mallows, C. L. (1983). A method for comparing two hierarchical clusterings (with comments and rejoinder), Journal of the American Statistical Association, 78, 553-584. https://doi.org/10.1080/01621459.1983.10478008
- Fraley, C. and Raftery, A. E. (1998). How many clusters? Which clustering methods? Answers via model-based cluster analysis, Computer Journal, 41, 578-588. https://doi.org/10.1093/comjnl/41.8.578
- Gnanadesikan, R., Kettenring, J. R. and Tsao, S. L. (1995). Weighting and selection of variables for cluster analysis, Journal of Classification, 7, 271-285.
- Hautamaki, V., Cherednichenko, S., Karkkainen, I., Kinnunen, T. and Franti, P. (2005). Improving K-Means by Outlier Removal, LNCS Springer, Berlin / Heidelberg, may 2005, 978-987.
- Hawkins, D. (1980). Identifications of Outliers, Chapman and Hall, London.
- Hubert, L. and Arabie, P. (1985). Comparing partitions, Journal of Classification, 2, 193-218.
- Jayakumar, G. S. and Thomas, B. J. (2013). A new procedure of clustering based on multivariate outlier detection, Journal of Data Science, 11, 69-84.
- Jiang, M. F., Tseng, S. S. and Su, C. M. (2001). Two-phase clustering process for outliers detection, Pattern Recognition Letters, 22, 691-700. https://doi.org/10.1016/S0167-8655(00)00131-8
- Kim, S. (2009). Automated K-means clustering and R implementation, The Korean Journal of Applied Statistics, 22, 723-733. https://doi.org/10.5351/KJAS.2009.22.4.723
- Kim, S. (2012). A variable selection procedure for K-means clustering, The Korean Journal of Applied Statistics, 25, 471-483. https://doi.org/10.5351/KJAS.2012.25.3.471
- Kriegel, H.-P., Kroger, P. and Zimek, A. (2010). Outlier detection techniques, The 2010 SIAM International Conference on Data Mining, Available from: https://www.siam.org/meetings/sdm10/ tutorial3.pdf.
- Milligan, G. W. (1980). An examination of six types of the effects of error perturbation on fifteen clustering algorithms, Psychometrika, 45, 325-342. https://doi.org/10.1007/BF02293907
- Milligan, G. W. (1985). An algorithm for generating artificial test clusters, Psychometrika, 50, 123-127. https://doi.org/10.1007/BF02294153
- Milligan, G. W. (1989). A validation study of a variable-weighting algorithm for cluster analysis, Journal of Classification, 6, 53-71. https://doi.org/10.1007/BF01908588
- Milligan, G. and Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set, Psychometrika, 50, 159-179. https://doi.org/10.1007/BF02294245
- Mojena, R. (1977). Hierarchical grouping method and stopping rules: An evaluation, The Computer Journal, 20, 359-363. https://doi.org/10.1093/comjnl/20.4.359
- Mojena, R., Wishart, D. and Andrews, G. B. (1980). Stopping rules for Ward's clustering method, COMPSTAT, 426-432.
- Pachgade, S. D. and Dhande, S. S. (2012). Outlier detection over data set using cluster-based and distance-based approach, International Journal of Advanced Research in Computer Science and Software Engineering, 2, 12-16.
- Pamula, R., Deka, J. K. and Nandi, S. (2011). An outlier detection method based on clustering, Second International Conference on Emerging Applications of Information Technology, 253-256.
- Qiu,W.-L. and Joe, H. (2006a). Generation of random clusters with specified degree of separation, Journal of Classification, 23, 315-334. https://doi.org/10.1007/s00357-006-0018-y
- Qiu, W.-L. and Joe, H. (2006b). Separation index and partial membership for clustering, Computational, Statistics and Data Analysis, 50, 585-603. https://doi.org/10.1016/j.csda.2004.09.009
- Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods, Journal of American Statistical Association, 66, 846-850. https://doi.org/10.1080/01621459.1971.10482356
- Rocke, D. M. and Woodruff, D. L. (1996). Identification of outliers in multivariate data, Journal of the American Statistical Association, 91, 1047-1061. https://doi.org/10.1080/01621459.1996.10476975
- Rousseeuw, P. J. and Leroy, A. M. (1987). Robust Regression and Outlier Detection, John Wiley and Sons, New York.
- Rousseeuw, P. J. and van Zomeren, B. C. (1990). Unmasking multivariate outliers and leverage points, Journal of the American Statistical Association, 85, 633-651. https://doi.org/10.1080/01621459.1990.10474920
- Tibshirani, R., Walther, G. and Hastie, T. (2001). Estimating the Number of Clusters in a Dataset via the Gap Statistic, Technical report, Dept of Biostatistics, Stanford University, Available from : http://www-stat.stanford.edu/-tibs/research.html.
- Ward, J. H. (1963). Hierarchical grouping to optimize an objective function, Journal of American Statistical Association, 58, 236-244. https://doi.org/10.1080/01621459.1963.10500845
- Wehrens R., Buydens L., Fraley, C. and Raftery, A. (2004). Model-based clustering for image seg- mentation and large datasets via sampling, Journal of Classification, 21, 231-253. https://doi.org/10.1007/s00357-004-0018-8
Cited by
- k -means clustering with outlier removal vol.90, 2017, https://doi.org/10.1016/j.patrec.2017.03.008
- Joint selection of variables and clusters: recovering the underlying structure of marketing data pp.2050-3326, 2019, https://doi.org/10.1057/s41270-018-0045-7