DOI QR코드

DOI QR Code

다수목적을 위한 2단계 실험

Two-Stage Experimental Design for Multiple Objectives

  • Jang, Dae-Heung (Department of Statistics, Pukyong National University) ;
  • Kim, Youngil (School of Business and Economics, ChungAng University)
  • 투고 : 2014.12.03
  • 심사 : 2015.02.05
  • 발행 : 2015.02.28

초록

D-최적 등을 위시한 최적실험은 비선형모형인 경우 추정을 하여야할 모수에 의존하는 문제점이 존재한다. 따라서 기본적으로 문헌에서는 모수추정을 위해서는 순차실험을 제안한다. 본 연구에서는 2단계 실험설계를 모수추정의 사례를 포함한 다양한 환경 하에서의 사용방법을 알아보았다. 본 연구에서 제안한 내용은 단계의 수나 구체적인 실험기준의 숫자에 상관없이 적용되는 범용적인 기준이다. 본 연구는 2단계 실험에서 3개 이상의 실험목적을 가지고 있는 경우 하이브리드(hybrid)방법을 제안하였다. 모든 실험은 근사실험설계의 형태로 논의되었다.

The D-optimal design for the nonlinear model typically depends on the unknown parameters to be estimated. Therefore, it is strongly recommended in literature to use a sequential experimental design for estimating the parameters. In this paper two stage experimental design is discussed under many different circumstances including estimating parameters. The method is so universal to be applied to any mixture of objectives for any model including linear model. A hybrid approach is suggested to handle more than 2 objectives in two-stage experimental design. The design is discussed in approximate design framework.

키워드

참고문헌

  1. Atkinson, A. C. and Donev, A. N. (1992). Optimal Experimental Designs, Oxford Press, Oxford.
  2. Dette, H. and Biedermann, S. (2003). Robust and efficient designs for the Michaelis-Menten Model, Journal of the American Statistical Association, 98, 679-686. https://doi.org/10.1198/016214503000000585
  3. Dunn, G. (1988). Optimal designs for drug, neurotransmitter and hormone receptor assays, Statistics in Medicine, 7, 805-815. https://doi.org/10.1002/sim.4780070710
  4. Dykstra, O. (1971). The augmentation of experimental data to maximize |$X^T$X|, Technometrics, 13, 682-688.
  5. Evans, J. W. (1979). Computer augmentation of experimental designs to maximize |$X^T$X|, Technometrics, 21, 321-330.
  6. Fedorov, V. V. (1972). Optimal Experimental Design, Academic Press, New York.
  7. Fedorov, V. V. and Leonov, A. N. (2014). Optimal Design for Nonlinear Response Models, Chapman & Hall/CRC, New York.
  8. Hill, P. D. (1980). D-optimal designs for partially nonlinear models, Technometrics, 22, 275-276. https://doi.org/10.1080/00401706.1980.10486145
  9. Kim, Y. I. and Jang, D. H. (2014). The maximin robust design for the uncertainty of parameters of Michaelis- Menten Model, The Korean Journal of Applied Statistics, 27, 1269-1278. https://doi.org/10.5351/KJAS.2014.27.7.1269
  10. Kitos, C. P. (2001). Design aspects for the Michaelis-Menten model, Biometrical Letters, 38, 53-66.
  11. Kitos, C. P. (2013). Optimal Experimental Design for Non-Linear Models, Springer, New York.
  12. Myers, W. R., Myers, R. H., Carter, W. H. JKr., and White, K. L. (1996). Two-stage designs for the logistic regression model in a single agent bioassay, Journal of Biopharmaceutial Statistics, 6, 283-301. https://doi.org/10.1080/10543409608835144
  13. Raaijmakers, J. G. W. (1997). Statistical analysis of the Michaelis-Menten equation, Biometrics, 43, 780-793.
  14. Trandafir, C. and Lopez-Fidalgo, J. (2004). Locally optimal designs for an extension of the Michaelis-Menten model, Advances in Model-Oriented Design Analysis, Communication to Statistics, 173-181.