DOI QR코드

DOI QR Code

A Stagewise Approach to Structural Equation Modeling

구조식 모형에 대한 단계적 접근

  • Lee, Bora (Department of Statistics, Chung-Ang University) ;
  • Park, Changsoon (Department of Statistics, Chung-Ang University)
  • 이보라 (중앙대학교 응용통계학과) ;
  • 박창순 (중앙대학교 응용통계학과)
  • Received : 2014.11.10
  • Accepted : 2015.01.07
  • Published : 2015.02.28

Abstract

Structural equation modeling (SEM) is a widely used in social sciences such as education, business administration, and psychology. In SEM, the latent variable score is the estimate of the latent variable which cannot be observed directly. This study uses stagewise structural equation modeling(stagewise SEM; SSEM) by partitioning the whole model into several stages. The traditional estimation method minimizes the discrepancy function using the variance-covariance of all observed variables. This method can lead to inappropriate situations where exogenous latent variables may be affected by endogenous latent variables. The SSEM approach can avoid such situations and reduce the complexity of the whole SEM in estimating parameters.

최근 교육학, 경영학, 심리학 등 사회과학 뿐만 아니라 공정관리, 생물정보학 등 자연과학에서도 널리 사용되고 있는 구조식 모형(structural equation modeling)에서 잠재변수점수(latent variable score)는 직접 측정이 불가능한 잠재변수를 수량화한 추정치이다. 이 연구에서는 구조식 모형을 단계(stage)별로 분할하여 분석하는 단계별 구조식 모형(stagewise SEM; SSEM)을 제안하였다. 기존 방법은 모든 관측변수의 분산-공분산을 한꺼번에 고려하므로 독립변수인 외생잠재변수(exogenous latent variable)가 종속변수인 내생잠재변수(endogenous latent variable)에 의해 영향을 받는, 논리적으로 타당하지 않은 경우가 있다. 단계별 구조식 모형은 이런 문제점을 해결할 뿐만 아니라 모형의 복잡성을 낮추어 쉽게 해를 찾을 수 있으며, 분석과정에서 생성되는 잠재변수점수로 추가 분석도 용이하다.

Keywords

References

  1. Anderson, T. W. and Rubin, H. (1956). Statistical inference in factor analysis, In Proceedings of the Third Berkeley Symposium, 5, 111-150.
  2. Bartholomew, D. and Knott, M. (1999). Latent Variable Models and Factor Analysis : Kendall's Library of Statistics 7, 2nd ed, John Wiley & Sons, London.
  3. Hayduck, L. A. (1987). Structural Equation Modeling with LISREL : Essentials and Advances, Johns Hopkins University Press, Baltimore and London.
  4. Hoyle, R. H. (1995). Structural Equation Modeling : Concepts, Issues and Applications, SAGE Publications, Thousand Oak.
  5. Joreskog, K. G. (1967). Some contributions to maximum likelihood factor analysis, Psychometrika, 32, 443-482. https://doi.org/10.1007/BF02289658
  6. Joreskog, K. G. (1972). Factor analysis by generalized least squares, Psychometrika, 37, 243-260. https://doi.org/10.1007/BF02306782
  7. Joreskog, K. G. (2000). Latent variable scores and their uses, available at http://www.ssicentral.com/lisrel/advancedtopics.html.
  8. Joreskog, K. G. and Sorbom, D. (1999). LISREL 8 User's Reference Guide, Scientific Software International.
  9. Joreskog, K. G., Sorbom, D. and Wallentin, F. Y. (2006). Latent variable scores and observational residuals, available at http://www.ssicentral.com/lisrel/advancedtopics.html.
  10. Lawley, D. N. and Maxwell, A. E. (1962). Factor analysis as a statistical method, Journal of the Royal Statistical Society, 12, 209-229.
  11. Lee, S. (2007). Structural Equation Modeling : A Bayesian Approach, John Wiley & Sons.
  12. Lei, P. andWu, Q. (2007). Introduction to structural equation modeling : issues and practical considerations, Educational Measurement : Issues and Practice, 26, 33-43. https://doi.org/10.1111/j.1745-3992.2007.00099.x