Abstract
Structural equation modeling (SEM) is a widely used in social sciences such as education, business administration, and psychology. In SEM, the latent variable score is the estimate of the latent variable which cannot be observed directly. This study uses stagewise structural equation modeling(stagewise SEM; SSEM) by partitioning the whole model into several stages. The traditional estimation method minimizes the discrepancy function using the variance-covariance of all observed variables. This method can lead to inappropriate situations where exogenous latent variables may be affected by endogenous latent variables. The SSEM approach can avoid such situations and reduce the complexity of the whole SEM in estimating parameters.
최근 교육학, 경영학, 심리학 등 사회과학 뿐만 아니라 공정관리, 생물정보학 등 자연과학에서도 널리 사용되고 있는 구조식 모형(structural equation modeling)에서 잠재변수점수(latent variable score)는 직접 측정이 불가능한 잠재변수를 수량화한 추정치이다. 이 연구에서는 구조식 모형을 단계(stage)별로 분할하여 분석하는 단계별 구조식 모형(stagewise SEM; SSEM)을 제안하였다. 기존 방법은 모든 관측변수의 분산-공분산을 한꺼번에 고려하므로 독립변수인 외생잠재변수(exogenous latent variable)가 종속변수인 내생잠재변수(endogenous latent variable)에 의해 영향을 받는, 논리적으로 타당하지 않은 경우가 있다. 단계별 구조식 모형은 이런 문제점을 해결할 뿐만 아니라 모형의 복잡성을 낮추어 쉽게 해를 찾을 수 있으며, 분석과정에서 생성되는 잠재변수점수로 추가 분석도 용이하다.