DOI QR코드

DOI QR Code

Inhibitory Effect of 3-(4-Hydroxyphenyl)-1-(thiophen-2-yl) prop-2-en-1-one, a Chalcone Derivative on MCP-1 Expression in Macrophages via Inhibition of ROS and Akt Signaling

  • Received : 2014.11.19
  • Accepted : 2014.12.18
  • Published : 2015.03.01

Abstract

Chalcones (1,3-diaryl-2-propen-1-ones), a subfamily of flavonoid, are widely known to possess potent anti-inflammatory and anti-oxidant properties. In this study, we investigated the effect of 3-(4-Hydroxyphenyl)-1-(thio3-(4-Hydroxyphenyl phen-2-yl)prop-2-en-1-one (TI-I-175), a synthetic chalcone derivative, on endotoxin-induced expression of monocyte chemoattractant protein-1 (MCP-1), one of the key chemokines that regulates migration and infiltration of immune cells, and its potential mechanisms. TI-I-175 potently inhibited MCP-1 mRNA expression stimulated by lipopolysaccharide (LPS) in RAW 264.7 macrophages without significant effect on cell viability. Treatment of cells with TI-I-175 markedly prevented LPS-induced transcriptional activation of activator protein-1 (AP-1) as measured by luciferase reporter assay, while nuclear factor-${\kappa}B$ (NF-${\kappa}B$) activity was not inhibited by TI-I-175, implying that TI-I-175 suppressed MCP-1 expression probably via regulation of AP-1. In addition, TI-I-175 treatment significantly inhibited LPS-induced Akt phosphorylation and led to a significant decrease in reactive oxygen species (ROS) production by LPS, which act as up-stream signaling events required for AP-1 activation in RAW 264.7 macrophages. Taken together, these results indicate that TI-I-175 suppresses MCP-1 gene expression in LPS-stimulated RAW 264.7 macrophages via suppression of ROS production and Akt activation.

Keywords

References

  1. Apel, K. and Hirt, H. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
  2. Avila, H. P., Smania Ede, F., Monache, F. D. and Smania, A., Jr. (2008) Structure-activity relationship of antibacterial chalcones. Bioorg. Med. Chem. 16, 9790-9794. https://doi.org/10.1016/j.bmc.2008.09.064
  3. Ban, H. S., Suzuki, K., Lim, S. S., Jung, S. H., Lee, S., Ji, J., Lee, H. S., Lee, Y. S., Shin, K. H. and Ohuchi, K. (2004) Inhibition of lipopolysaccharide-induced expression of inducible nitric oxide synthase and tumor necrosis factor-alpha by 2'-hydroxychalcone derivatives in RAW 264.7 cells. Biochem. Pharmacol. 67, 1549-1557. https://doi.org/10.1016/j.bcp.2003.12.016
  4. Batovska, D., Parushev, S., Slavova, A., Bankova, V., Tsvetkova, I., Ninova, M. and Najdenski, H. (2007) Study on the substituents' effects of a series of synthetic chalcones against the yeast Candida albicans. Eur. J. Med. Chem. 42, 87-92. https://doi.org/10.1016/j.ejmech.2006.08.012
  5. Bedard, K. and Krause, K. H. (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245-313. https://doi.org/10.1152/physrev.00044.2005
  6. Bian, Z. M., Elner, S. G., Yoshida, A. and Elner, V. M. (2004) Differential involvement of phosphoinositide 3-kinase/Akt in human RPE MCP-1 and IL-8 expression. Invest. Ophthalmol. Vis. Sci. 45, 1887-1896. https://doi.org/10.1167/iovs.03-0608
  7. Chen, X., Thakkar, H., Tyan, F., Gim, S., Robinson, H., Lee, C., Pandey, S. K., Nwokorie, C., Onwudiwe, N. and Srivastava, R. K. (2001) Constitutively active Akt is an important regulator of TRAIL sensitivity in prostate cancer. Oncogene 20, 6073-6083. https://doi.org/10.1038/sj.onc.1204736
  8. Chen, X. L., Zhang, Q., Zhao, R. and Medford, R. M. (2004) Superoxide, H2O2, and iron are required for TNF-alpha-induced MCP-1 gene expression in endothelial cells: role of Rac1 and NADPH oxidase. Am. J. Physiol. Heart Circ. Physiol. 286, H1001-H1007.
  9. Chowdhury, A. R., Sharma, S., Mandal, S., Goswami, A., Mukhopadhyay, S. and Majumder, H. K. (2002) Luteolin, an emerging anticancer flavonoid, poisons eukaryotic DNA topoisomerase I. Biochem. J. 366, 653-661. https://doi.org/10.1042/bj20020098
  10. Deshmane, S. L., Kremlev, S., Amini, S. and Sawaya, B. E. (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J. Interferon Cytokine Res. 29, 313-326. https://doi.org/10.1089/jir.2008.0027
  11. Dinkova-Kostova, A. T., Massiah, M. A., Bozak, R. E., Hicks, R. J. and Talalay, P. (2001) Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups. Proc. Natl. Acad. Sci. U.S.A. 98, 3404-3409. https://doi.org/10.1073/pnas.051632198
  12. Gu, L., Okada, Y., Clinton, S. K., Gerard, C., Sukhova, G. K., Libby, P. and Rollins, B. J. (1998) Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol. Cell 2, 275-281. https://doi.org/10.1016/S1097-2765(00)80139-2
  13. Hirai, S., Kim, Y. I., Goto, T., Kang, M. S., Yoshimura, M., Obata, A., Yu, R. and Kawada, T. (2007) Inhibitory effect of naringenin chalcone on inflammatory changes in the interaction between adipocytes and macrophages. Life Sci. 81, 1272-1279. https://doi.org/10.1016/j.lfs.2007.09.001
  14. Itoh, N., Semba, S., Ito, M., Takeda, H., Kawata, S. and Yamakawa, M. (2002) Phosphorylation of Akt/PKB is required for suppression of cancer cell apoptosis and tumor progression in human colorectal carcinoma. Cancer 94, 3127-3134. https://doi.org/10.1002/cncr.10591
  15. Iwashita, K., Kobori, M., Yamaki, K. and Tsushida, T. (2000) Flavonoids inhibit cell growth and induce apoptosis in B16 melanoma 4A5 cells. Biosci. Biotechnol. Biochem. 64, 1813-1820. https://doi.org/10.1271/bbb.64.1813
  16. Jing, H., Zhou, X., Dong, X., Cao, J., Zhu, H., Lou, J., Hu, Y., He, Q. and Yang, B. (2010) Abrogation of Akt signaling by Isobavachalcone contributes to its anti-proliferative effects towards human cancer cells. Cancer Lett. 294, 167-177. https://doi.org/10.1016/j.canlet.2010.01.035
  17. Kadayat, T., Kim, M. J., Nam, T. G., Park, P. H. and Lee, E. S. (2014) Thieny/furanyl-hydroxyphenylpropenones as inhibitors of LPS-induced ROS and NO production in RAW 264.7 macrophages, and their structure-activity relationship study. Bull. Korean Chem. Soc. 35, 2481-2486 https://doi.org/10.5012/bkcs.2014.35.8.2481
  18. Karin, M. (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J. Biol. Chem. 270, 16483-16486. https://doi.org/10.1074/jbc.270.28.16483
  19. Kim, M. J., Kadayat, T., Kim, D. E., Lee, E. S. and Park, P. H. (2014) TI-I-174, a synthetic chalcone derivative, suppresses nitric oxide production in murine macrophages via heme oxygenase-1 induction and inhibition of AP-1. Biomol. Ther. 22, 390-399. https://doi.org/10.4062/biomolther.2014.062
  20. Kumar, S., Sharma, A., Madan, B., Singhal, V. and Ghosh, B. (2007) Isoliquiritigenin inhibits IkappaB kinase activity and ROS generation to block TNF-alpha induced expression of cell adhesion molecules on human endothelial cells. Biochem. Pharmacol. 73, 1602-1612. https://doi.org/10.1016/j.bcp.2007.01.015
  21. Lee, Y. H., Jeon, S. H., Kim, S. H., Kim, C., Lee, S. J., Koh, D., Lim, Y., Ha, K. and Shin, S. Y. (2012) A new synthetic chalcone derivative, 2-hydroxy-3',5,5'-trimethoxychalcone (DK-139), suppresses the Toll-like receptor 4-mediated inflammatory response through inhibition of the Akt/NF-kappaB pathway in BV2 microglial cells. Exp. Mol. Med. 44, 369-377. https://doi.org/10.3858/emm.2012.44.6.042
  22. Leverence, J. T., Medhora, M., Konduri, G. G. and Sampath, V. (2011) Lipopolysaccharide-induced cytokine expression in alveolar epithelial cells: role of PKCzeta-mediated p47phox phosphorylation. Chem. Biol. Interact. 189, 72-81. https://doi.org/10.1016/j.cbi.2010.09.026
  23. Mandrekar, P., Ambade, A., Lim, A., Szabo, G. and Catalano, D. (2011) An essential role for monocyte chemoattractant protein-1 in alcoholic liver injury: regulation of proinflammatory cytokines and hepatic steatosis in mice. Hepatology 54, 2185-2197. https://doi.org/10.1002/hep.24599
  24. Martin, T., Cardarelli, P. M., Parry, G. C., Felts, K. A. and Cobb, R. R. (1997) Cytokine induction of monocyte chemoattractant protein-1 gene expression in human endothelial cells depends on the cooperative action of NF-kappa B and AP-1. Eur. J. Immunol. 27, 1091-1097. https://doi.org/10.1002/eji.1830270508
  25. Murao, K., Ohyama, T., Imachi, H., Ishida, T., Cao, W. M., Namihira, H., Sato, M., Wong, N. C. and Takahara, J. (2000) TNF-alpha stimulation of MCP-1 expression is mediated by the Akt/PKB signal transduction pathway in vascular endothelial cells. Biochem. Biophys. Res. Commun. 276, 791-796. https://doi.org/10.1006/bbrc.2000.3497
  26. Pan, Y., Zhu, G., Wang, Y., Cai, L., Cai, Y., Hu, J., Li, Y., Yan, Y., Wang, Z., Li, X., Wei, T. and Liang, G. (2013) Attenuation of high-glucoseinduced inflammatory response by a novel curcumin derivative B06 contributes to its protection from diabetic pathogenic changes in rat kidney and heart. J. Nutr. Biochem. 24, 146-155. https://doi.org/10.1016/j.jnutbio.2012.03.012
  27. Park, D. W., Baek, K., Kim, J. R., Lee, J. J., Ryu, S. H., Chin, B. R. and Baek, S. H. (2009) Resveratrol inhibits foam cell formation via NADPH oxidase 1- mediated reactive oxygen species and monocyte chemotactic protein-1. Exp. Mol. Med. 41, 171-179. https://doi.org/10.3858/emm.2009.41.3.020
  28. Peluso, M. R., Miranda, C. L., Hobbs, D. J., Proteau, R. R. and Stevens, J. F. (2010) Xanthohumol and related prenylated flavonoids inhibit inflammatory cytokine production in LPS-activated THP-1 monocytes: structure-activity relationships and in silico binding to myeloid differentiation protein-2 (MD-2). Planta Med. 76, 1536-1543. https://doi.org/10.1055/s-0029-1241013
  29. Remppis, A., Bea, F., Greten, H. J., Buttler, A., Wang, H., Zhou, Q., Preusch, M. R., Enk, R., Ehehalt, R., Katus, H. and Blessing, E. (2010) Rhizoma Coptidis inhibits LPS-induced MCP-1/CCL2 production in murine macrophages via an AP-1 and NFkappaB-dependent pathway. Mediators Inflamm. 2010, 194896.
  30. Sabzevari, O., Galati, G., Moridani, M. Y., Siraki, A. and O'Brien, P. J. (2004) Molecular cytotoxic mechanisms of anticancer hydroxychalcones. Chem. Biol. Interact. 148, 57-67. https://doi.org/10.1016/j.cbi.2004.04.004
  31. Takeda, K., Ichiki, T., Tokunou, T., Iino, N. and Takeshita, A. (2001) 15-Deoxy-delta 12,14-prostaglandin J2 and thiazolidinediones activate the MEK/ERK pathway through phosphatidylinositol 3-kinase in vascular smooth muscle cells. J. Biol. Chem. 276, 48950-48955. https://doi.org/10.1074/jbc.M108722200
  32. Tesch, G. H. (2008) MCP-1/CCL2: a new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy. Am. J. Physiol. Renal Physiol. 294, F697-F701. https://doi.org/10.1152/ajprenal.00016.2008
  33. Wang, Y., Chen, J., Chen, L., Tay, Y. C., Rangan, G. K. and Harris, D. C. (1997) Induction of monocyte chemoattractant protein-1 in proximal tubule cells by urinary protein. J. Am. Soc. Nephrol. 8, 1537-1545.
  34. Wang, Y., Rangan, G. K., Goodwin, B., Tay, Y. C. and Harris, D. C. (2000) Lipopolysaccharide-induced MCP-1 gene expression in rat tubular epithelial cells is nuclear factor-kappaB dependent. Kidney Int. 57, 2011-2022. https://doi.org/10.1046/j.1523-1755.2000.00051.x
  35. Wu, J., Li, J., Cai, Y., Pan, Y., Ye, F., Zhang, Y., Zhao, Y., Yang, S., Li, X. and Liang, G. (2011) Evaluation and discovery of novel synthetic chalcone derivatives as anti-inflammatory agents. J. Med. Chem. 54, 8110-8123. https://doi.org/10.1021/jm200946h
  36. Yadav, V. R., Prasad, S., Sung, B. and Aggarwal, B. B. (2011) The role of chalcones in suppression of NF-kappaB-mediated inflammation and cancer. Int. Immunopharmacol. 11, 295-309. https://doi.org/10.1016/j.intimp.2010.12.006
  37. Zhang, E. H., Wang, R. F., Guo, S. Z. and Liu, B. (2013) An update on antitumor activity of naturally occurring chalcones. Evid. Based Complement. Alternat. Med. 2013, 815621.

Cited by

  1. Anti-inflammatory effects of trans-1,3-diphenyl-2,3-epoxypropane-1-one in zebrafish embryos in vivo model vol.50, 2016, https://doi.org/10.1016/j.fsi.2016.01.018
  2. Globular adiponectin attenuates LPS-induced reactive oxygen species production in HepG2 cells via FoxO3A and HO-1 signaling vol.148, 2016, https://doi.org/10.1016/j.lfs.2016.02.001
  3. Role of p62 in the suppression of inflammatory cytokine production by adiponectin in macrophages: Involvement of autophagy and p21/Nrf2 axis vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-00456-6
  4. Design, synthesis, and structure-activity relationship study of halogen containing 2-benzylidene-1-indanone derivatives for inhibition of LPS-stimulated ROS production in RAW 264.7 macrophages vol.133, 2017, https://doi.org/10.1016/j.ejmech.2017.03.049
  5. Inhibitory Activity of Halogenated 3-Benzylidenechroman-4-ones Against Lipopolysaccharide-stimulated Reactive Oxygen Species Production in RAW 264.7 Macrophages vol.38, pp.6, 2017, https://doi.org/10.1002/bkcs.11147
  6. Nuclear factor kappa-B- and activator protein-1-mediated immunostimulatory activity of compound K in monocytes and macrophages vol.41, pp.3, 2017, https://doi.org/10.1016/j.jgr.2016.06.004
  7. ZFP36L1 and AUF1 Induction Contribute to the Suppression of Inflammatory Mediators Expression by Globular Adiponectin via Autophagy Induction in Macrophages vol.26, pp.5, 2018, https://doi.org/10.4062/biomolther.2018.078
  8. YJI-7 Suppresses ROS Production and Expression of Inflammatory Mediators via Modulation of p38MAPK and JNK Signaling in RAW 264.7 Macrophages vol.26, pp.2, 2018, https://doi.org/10.4062/biomolther.2016.276
  9. Antitumor Effect of the Chalcone Analogue, (E) -1- (4-Ethoxy-3-Methoxyphenyl) -5- Methylhex-1-en-3-One on HeLa Cell Line vol.0, pp.0, 2019, https://doi.org/10.2478/sjecr-2018-0048
  10. Corosolic acid attenuates cardiac fibrosis following myocardial infarction in mice vol.45, pp.5, 2015, https://doi.org/10.3892/ijmm.2020.4531