DOI QR코드

DOI QR Code

Epigenetics: general characteristics and implications for oral health

  • Seo, Ji-Yun (Department of Conservative Dentistry, Seoul National University School of Dentistry and Dental Research Institute) ;
  • Park, Yoon-Jung (Department of Nutritional Science and Food Management, Ewha Womans University) ;
  • Yi, Young-Ah (Department of Dentistry, Inje University Seoul Paik Hospital) ;
  • Hwang, Ji-Yun (Nutrition Education Major, Graduate School of Education, Sangmyung University) ;
  • Lee, In-Bog (Department of Conservative Dentistry, Seoul National University School of Dentistry and Dental Research Institute) ;
  • Cho, Byeong-Hoon (Department of Conservative Dentistry, Seoul National University School of Dentistry and Dental Research Institute) ;
  • Son, Ho-Hyun (Department of Conservative Dentistry, Seoul National University School of Dentistry and Dental Research Institute) ;
  • Seo, Deog-Gyu (Department of Conservative Dentistry, Seoul National University School of Dentistry and Dental Research Institute)
  • Received : 2014.04.11
  • Accepted : 2014.09.11
  • Published : 2015.02.28

Abstract

Genetic information such as DNA sequences has been limited to fully explain mechanisms of gene regulation and disease process. Epigenetic mechanisms, which include DNA methylation, histone modification and non-coding RNAs, can regulate gene expression and affect progression of disease. Although studies focused on epigenetics are being actively investigated in the field of medicine and biology, epigenetics in dental research is at the early stages. However, studies on epigenetics in dentistry deserve attention because epigenetic mechanisms play important roles in gene expression during tooth development and may affect oral diseases. In addition, understanding of epigenetic alteration is important for developing new therapeutic methods. This review article aims to outline the general features of epigenetic mechanisms and describe its future implications in the field of dentistry.

Keywords

References

  1. Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell 2007;128:635-638. https://doi.org/10.1016/j.cell.2007.02.006
  2. Holliday R. Epigenetics: a historical overview. Epigenetics 2006;1:76-80. https://doi.org/10.4161/epi.1.2.2762
  3. Holliday R. Mechanisms for the control of gene activity during development. Biol Rev Camb Philos Soc 1990;65:431-471. https://doi.org/10.1111/j.1469-185X.1990.tb01233.x
  4. Russo VE, Martienssen RA, Riggs AD. Epigenetic mechanisms of gene regulation. New York: Cold Spring Harbor Laboratory Press; 1996. p1-4.
  5. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev 2009;23:781-783. https://doi.org/10.1101/gad.1787609
  6. Bayarsaihan D. Epigenetic mechanisms in inflammation. J Dent Res 2011;90:9-17. https://doi.org/10.1177/0022034510378683
  7. Barros SP, Offenbacher S. Epigenetics: connecting environment and genotype to phenotype and disease. J Dent Res 2009;88:400-408. https://doi.org/10.1177/0022034509335868
  8. Kaikkonen MU, Lam MT, Glass CK. Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res 2011;90:430-440. https://doi.org/10.1093/cvr/cvr097
  9. Lod S, Johansson T, Abrahamsson KH, Larsson L. The influence of epigenetics in relation to oral health. Int J Dent Hyg 2014;12:48-54. https://doi.org/10.1111/idh.12030
  10. Katsnelson A. Epigenome effort makes its mark. Nature 2010;467:646. https://doi.org/10.1038/467646a
  11. Williams SD, Hughes TE, Adler CJ, Brook AH, Townsend GC. Epigenetics: a new frontier in dentistry. Aust Dent J 2014;59 Suppl 1:23-33. https://doi.org/10.1111/adj.12155
  12. Fan Z, Yamaza T, Lee JS, Yu J, Wang S, Fan G, Shi S, Wang CY. BCOR regulates mesenchymal stem cell function by epigenetic mechanisms. Nat Cell Biol 2009;11:1002-1009. https://doi.org/10.1038/ncb1913
  13. Brook AH. Multilevel complex interactions between genetic, epigenetic and environmental factors in the aetiology of anomalies of dental development. Arch Oral Biol 2009;54 (Supplement 1):S3-17. https://doi.org/10.1016/j.archoralbio.2009.09.005
  14. Townsend GC, Richards L, Hughes T, Pinkerton S, Schwerdt W. Epigenetic influences may explain dental differences in monozygotic twin pairs. Aust Dent J 2005;50:95-100. https://doi.org/10.1111/j.1834-7819.2005.tb00347.x
  15. Townsend G, Bockmann M, Hughes T, Brook A. Genetic, environmental and epigenetic influences on variation in human tooth number, size and shape. Odontology 2012;100:1-9. https://doi.org/10.1007/s10266-011-0052-z
  16. Gomez RS, Dutra WO, Moreira PR. Epigenetics and periodontal disease: future perspectives. Inflamm Res 2009;58:625-629. https://doi.org/10.1007/s00011-009-0041-7
  17. Lindroth AM, Park YJ. Epigenetic biomarkers: a step forward for understanding periodontitis. J Periodontal Implant Sci 2013;43:111-120. https://doi.org/10.5051/jpis.2013.43.3.111
  18. Zhang S, Crivello A, Offenbacher S, Moretti A, Paquette DW, Barros SP. Interferon-gamma promoter hypomethylation and increased expression in chronic periodontitis. J Clin Periodontol 2010;37:953-961. https://doi.org/10.1111/j.1600-051X.2010.01616.x
  19. Zhang S, Barros SP, Moretti AJ, Yu N, Zhou J, Preisser JS, Niculescu MD, Offenbacher S. Epigenetic regulation of TNFA expression in periodontal disease. J Periodontol 2013;84:1606-1616.
  20. Zhang S, Barros SP, Niculescu MD, Moretti AJ, Preisser JS, Offenbacher S. Alteration of PTGS2 promoter methylation in chronic periodontitis. J Dent Res 2010;89:133-137. https://doi.org/10.1177/0022034509356512
  21. Kinane DF, Hart TC. Genes and gene polymorphisms associated with periodontal disease. Crit Rev Oral Biol Med 2003;14:430-449. https://doi.org/10.1177/154411130301400605
  22. Stenvinkel P, Karimi M, Johansson S, Axelsson J, Suliman M, Lindholm B, Heimburger O, Barany P, Alvestrand A, Nordfors L, Qureshi AR, Ekstrom TJ, Schalling M. Impact of inflammation on epigenetic DNA methylation - a novel risk factor for cardiovascular disease? J Intern Med 2007;261:488-499. https://doi.org/10.1111/j.1365-2796.2007.01777.x
  23. Cardoso FP, Viana MB, Sobrinho AP, Diniz MG, Brito JA, Gomes CC, Moreira PR, Gomez RS. Methylation pattern of the IFN-gamma gene in human dental pulp. J Endod 2010;36:642-646. https://doi.org/10.1016/j.joen.2009.12.017
  24. Cardoso FP, de Faria Amormino SA, Dutra WO, Ribeiro Sobrinho AP, Moreira PR. Methylation pattern of the CD14 and TLR2 genes in human dental pulp. J Endod 2014;40:384-386. https://doi.org/10.1016/j.joen.2013.11.024
  25. Duncan HF, Smith AJ, Fleming GJ, Cooper PR. Histone deacetylase inhibitors induced differentiation and accelerated mineralization of pulp-derived cells. J Endod 2012;38:339-345. https://doi.org/10.1016/j.joen.2011.12.014
  26. Duncan HF, Smith AJ, Fleming GJ, Cooper PR. Histone deacetylase inhibitors epigenetically promote reparative events in primary dental pulp cells. Exp Cell Res 2013;319:1534-1543. https://doi.org/10.1016/j.yexcr.2013.02.022
  27. Hui T, A P, Zhao Y, Wang C, Gao B, Zhang P, Wang J, Zhou X, Ye L. EZH2, a potential regulator of dental pulp inflammation and regeneration. J Endod 2014;40:1132-1138. https://doi.org/10.1016/j.joen.2014.01.031
  28. Jones PA, Liang G. Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 2009;10:805-811.
  29. Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 2000;405:486-489. https://doi.org/10.1038/35013106
  30. Loenen WA. S-adenosylmethionine: jack of all trades and master of everything? Biochem Soc Trans 2006;34:330-333. https://doi.org/10.1042/BST0340330
  31. Vucic EA, Brown CJ, Lam WL. Epigenetics of cancer progression. Pharmacogenomics 2008;9:215-234. https://doi.org/10.2217/14622416.9.2.215
  32. Bird AP, Wolffe AP. Methylation-induced repressionbelts, braces, and chromatin. Cell 1999;99:451-454. https://doi.org/10.1016/S0092-8674(00)81532-9
  33. Cheung HH, Lee TL, Rennert OM, Chan WY. DNA methylation of cancer genome. Birth Defects Res C Embryo Today 2009;87:335-350. https://doi.org/10.1002/bdrc.20163
  34. Fuchs J, Demidov D, Houben A, Schubert I. Chromosomal histone modification patterns-from conservation to diversity. Trends Plant Sci 2006;11:199-208. https://doi.org/10.1016/j.tplants.2006.02.008
  35. Campos EI, Reinberg D. Histones: annotating chromatin. Annu Rev Genet 2009;43:559-599. https://doi.org/10.1146/annurev.genet.032608.103928
  36. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K. High-resolution profiling of histone methylations in the human genome. Cell 2007;129:823-837. https://doi.org/10.1016/j.cell.2007.05.009
  37. Lan F, Shi Y. Epigenetic regulation: methylation of histone and non-histone proteins. Sci China C Life Sci 2009;52:311-322. https://doi.org/10.1007/s11427-009-0054-z
  38. Duncan HF, Smith AJ, Fleming GJ, Cooper PR. HDACi: cellular effects, opportunities for restorative dentistry. J Dent Res 2011;90:1377-1388. https://doi.org/10.1177/0022034511406919
  39. Paino F, La Noce M, Tirino V, Naddeo P, Desiderio V, Pirozzi G, De Rosa A, Laino L, Altucci L, Papaccio G. Histone deacetylase inhibition with valproic acid downregulates osteocalcin gene expression in human dental pulp stem cells and osteoblasts: evidence for HDAC2 involvement. Stem Cells 2014;32:279-289. https://doi.org/10.1002/stem.1544
  40. Wang T, Liu H, Ning Y, Xu Q. The histone acetyltransferase p300 regulates the expression of pluripotency factors and odontogenic differentiation of human dental pulp cells. PLoS One 2014;9:e102117. https://doi.org/10.1371/journal.pone.0102117
  41. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010;466:835-840. https://doi.org/10.1038/nature09267
  42. Sun Q, Liu H, Chen Z. The fine tuning role of microRNARNA interaction in odontoblast differentiation and disease. Oral Dis 2014 Mar 22. doi: 10.1111/odi.12237. [Epub ahead of print]
  43. Perez P, Jang SI, Alevizos I. Emerging landscape of non-coding RNAs in oral health and disease. Oral Dis 2014;20:226-235. https://doi.org/10.1111/odi.12142
  44. Reik W, Walter J. Imprinting mechanisms in mammals. Curr Opin Genet Dev 1998;8:154-164. https://doi.org/10.1016/S0959-437X(98)80136-6
  45. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999;99:247-257. https://doi.org/10.1016/S0092-8674(00)81656-6
  46. Miranda TB, Jones PA. DNA methylation: the nuts and bolts of repression. J Cell Physiol 2007;213:384-390. https://doi.org/10.1002/jcp.21224
  47. Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007;447:425-432. https://doi.org/10.1038/nature05918
  48. Ansel KM, Lee DU, Rao A. An epigenetic view of helper T cell differentiation. Nat Immunol 2003;4:616-623. https://doi.org/10.1038/ni0703-616
  49. Post WS, Goldschmidt-Clermont PJ, Wilhide CC, Heldman AW, Sussman MS, Ouyang P, Milliken EE, Issa JP. Methylation of the estrogen receptor gene is associated with aging and atherosclerosis in the cardiovascular system. Cardiovasc Res 1999;43:985-991. https://doi.org/10.1016/S0008-6363(99)00153-4
  50. Lund G, Andersson L, Lauria M, Lindholm M, Fraga MF, Villar-Garea A, Ballestar E, Esteller M, Zaina S. DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem 2004;279:29147-29154. https://doi.org/10.1074/jbc.M403618200
  51. Zaina S, Lindholm MW, Lund G. Nutrition and aberrant DNA methylation patterns in atherosclerosis: more than just hyperhomocysteinemia? J Nutr 2005;135:5-8. https://doi.org/10.1093/jn/135.1.5
  52. Barker DJ, Eriksson JG, Forsen T, Osmond C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol 2002;31:1235-1239. https://doi.org/10.1093/ije/31.6.1235
  53. Razin A, Shemer R. DNA methylation in early development. Hum Mol Genet 1995;4:1751-1755. https://doi.org/10.1093/hmg/4.suppl_1.1751
  54. Ohi T, Uehara Y, Takatsu M, Watanabe M, Ono T. Hypermethylation of CpGs in the promoter of the COL1A1 gene in the aged periodontal ligament. J Dent Res 2006;85:245-250. https://doi.org/10.1177/154405910608500308
  55. Wu H, Lippmann JE, Oza JP, Zeng M, Fives-Taylor P, Reich NO. Inactivation of DNA adenine methyltransferase alters virulence factors in Actinobacillus actinomycetemcomitans. Oral Microbiol Immunol 2006;21:238-244. https://doi.org/10.1111/j.1399-302X.2006.00284.x
  56. Ito K. Impact of post-translational modifications of proteins on the inflammatory process. Biochem Soc Trans 2007;35:281-283. https://doi.org/10.1042/BST0350281
  57. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003;349:2042-2054. https://doi.org/10.1056/NEJMra023075
  58. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer 2004;4:143-153. https://doi.org/10.1038/nrc1279
  59. Breivik J, Gaudernack G. Genomic instability, DNA methylation, and natural selection in colorectal carcinogenesis. Semin Cancer Biol 1999;9:245-254. https://doi.org/10.1006/scbi.1999.0123
  60. Choi S, Myers JN. Molecular pathogenesis of oral squamous cell carcinoma: implications for therapy. J Dent Res 2008;87:14-32. https://doi.org/10.1177/154405910808700104
  61. Babel N, Cherepnev G, Babel D, Tropmann A, Hammer M, Volk HD, Reinke P. Analysis of tumor necrosis factoralpha, transforming growth factor-beta, interleukin-10, IL-6, and interferon-gamma gene polymorphisms in patients with chronic periodontitis. J Periodontol 2006;77:1978-1983. https://doi.org/10.1902/jop.2006.050315
  62. Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006;5:769-784. https://doi.org/10.1038/nrd2133
  63. Balasubramanian S, Verner E, Buggy JJ. Isoform-specific histone deacetylase inhibitors: the next step? Cancer Lett 2009;280:211-221. https://doi.org/10.1016/j.canlet.2009.02.013

Cited by

  1. Epigenetic regulatory elements: Recent advances in understanding their mode of action and use for recombinant protein production in mammalian cells vol.10, pp.7, 2015, https://doi.org/10.1002/biot.201400649
  2. Protocol for assessing maternal, environmental and epigenetic risk factors for dental caries in children vol.15, pp.1, 2015, https://doi.org/10.1186/s12903-015-0143-2
  3. Epigenetic regulation in dental pulp inflammation vol.23, pp.1, 2016, https://doi.org/10.1111/odi.12464
  4. Current Concepts of Epigenetics and Its Role in Periodontitis vol.4, pp.4, 2017, https://doi.org/10.1007/s40496-017-0156-9
  5. The periodontal war: microbes and immunity vol.75, pp.1, 2017, https://doi.org/10.1111/prd.12222
  6. One-Carbon Metabolism Links Nutrition Intake to Embryonic Development via Epigenetic Mechanisms vol.2019, pp.None, 2015, https://doi.org/10.1155/2019/3894101
  7. The Biology of Social Adversity Applied to Oral Health vol.98, pp.13, 2015, https://doi.org/10.1177/0022034519876559
  8. Photobiomodulation therapy improves human dental pulp stem cell viability and migration in vitro associated to upregulation of histone acetylation vol.35, pp.3, 2015, https://doi.org/10.1007/s10103-019-02931-0