DOI QR코드

DOI QR Code

Biological Control of Fusarium Stalk Rot of Maize Using Bacillus spp.

Bacillus spp.를 이용한 옥수수 밑둥썩음병의 생물학적 방제

  • Han, Joon-Hee (Division of Bioresource Sciences, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Park, Gi-Chang (Division of Bioresource Sciences, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Kim, Joon-Oh (Division of Bioresource Sciences, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Kim, Kyoung Su (Division of Bioresource Sciences, College of Agriculture and Life Sciences, Kangwon National University)
  • Received : 2015.09.23
  • Accepted : 2015.11.09
  • Published : 2015.12.31

Abstract

Maize (Zea mays L.) is an economically important crop in worldwide. While the consumption of the maize is steadily increasing, the yield is decreasing due to continuous mono-cultivation and infection of soil-borne fungal pathogens such as Fusarium species. Recently, stalk rot disease in maize, caused by F. subglutinans and F. temperatum has been reported in Korea. In this study, we isolated bacterial isolates in rhizosphere soil of maize and subsequently tested for antagonistic activities against F. subglutinans and F. temperatum. A total of 1,357 bacterial strains were isolated from rhizosphere. Among them three bacterial isolates (GC02, GC07, GC08) were selected, based on antagonistic effects against Fusarium species. The isolates GC02 and GC07 were most efficient in inhibiting the mycelium growth of the pathogens. The three isolates GC02, GC07 and GC08 were identified as Bacillus methylotrophicus, B. amyloliquefaciens and B. thuringiensis using 16S rRNA sequence analysis, respectively. GC02 and GC07 bacterial suspensions were able to suppress over 80% conidial germination of the pathogens. GC02, GC07 and GC08 were capable of producing large quantities of protease enzymes, whereas the isolates GC07 and GC08 produced cellulase enzymes. The isolates GC02 and GC07 were more efficient in phosphate solubilization and siderophore production than GC08. Analysis of disease suppression revealed that GC07 was most effective in suppressing the disease development of stalk rot. It was also found that B. methylotrophicus GC02 and B. amyloliquefaciens GC07 have an ability to inhibit the growth of other plant pathogenic fungi. This study indicated B. methylotrophicus GC02 and B. amyloliquefaciens GC07 has potential for being used for the development of a biological control agent.

옥수수는 세계적으로 가장 중요한 작물이다. 옥수수의 소비가 꾸준히 증가하고 있지만, 생산량은 연작과 Fusarium spp.와 같은 토양전염성 곰팡이병의 감염에 의해 줄어들고 있다. 최근에 우리나라를 포함해 전 세계적으로 F. subglutinans와 F. temperatum에 의해 발생되는 옥수수 밑둥썩음병의 발생이 많이 보고되고 있다. 본 연구에서는 병에 걸리지 않은 건전한 옥수수 토양 근권에서 F. subglutinans와 F. temperatum에 대치배양을 통해 항균활성을 보이는 3 균주(GC02, GC07, GC08)를 선발하였다. 선발된 3 균주 중 GC02와 GC07이 균사생장을 효과적으로 억제하였다. 그리고 16s rRNA에 기반하여 분석한 결과, GC02는 Bacillus methylotrophicus, GC07은 B. amyloliquefaciens 그리고 GC08은 B. thuringiensis로 동정되었다. 또한, GC02와 GC07은 포자발아의 억제에도 효과적이었다. 3개의 Bacillus 균주들은 모두 protease의 활성이 강하게 나타났으며, cellulase 활성은 GC07과 GC08에서만 나타났다. 그리고 불용성 인산의 가용화와 siderophore의 생산은 GC02와 GC07이 비교적 GC08에 비해 우수한 것으로 나타났다. 옥수수 줄기에 2개의 Fusarium과 접종하여 발병억제효과를 검정한 결과 B. amyloliquefaciens GC07이 가장 효과적인 방제효과를 나타내었다. 또한 B. methylotrophicus GC02와 B. amyloliquefaciens GC07은 다른 식물병원성 진균들도 효과적으로 균사생장을 억제하였다. 따라서, B. methylotrophicus GC02와 B. amyloliquefaciens GC07은 식물병원성 진균방제에 생물학적 방제제로서 역할이 가능하다고 판단된다.

Keywords

References

  1. Annapurna, K., Kumar, A., Kumar, L. V., Govindasamy, V., Bose, P. and Ramadoss, D. 2013. PGPR-Induced Systemic Resistance (ISR) in Plant Disease Management Bacteria in Agrobiology: Disease Management. pp. 405-425. Springer.
  2. Arrebola, E., Jacobs, R. and Korsten, L. 2010. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J. Appl. Microbiol. 108: 386-395. https://doi.org/10.1111/j.1365-2672.2009.04438.x
  3. Bagg, A. and Neilands, J. 1987. Molecular mechanism of regulation of siderophore-mediated iron assimilation. Microbiol. Rev. 51: 509.
  4. Barros, F. F. C., Simiqueli, A. P. R., de Andrade, C. J. and Pastore, G. M. 2013. Production of enzymes from agroindustrial wastes by biosurfactant-producing strains of Bacillus subtilis. Biotechnol. Res. Int. 2013: 9.
  5. Beneduzi, A., Ambrosini, A. and Passaglia, L. M. 2012. Plant growthpromoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 35: 1044-1051. https://doi.org/10.1590/S1415-47572012000600020
  6. Bhaskar, N., Sudeepa, E., Rashmi, H. and Selvi, A. T. 2007. Partial purification and characterization of protease of Bacillus proteolyticus CFR3001 isolated from fish processing waste and its antibacterial activities. Bioresour. Technol. 98: 2758-2764. https://doi.org/10.1016/j.biortech.2006.09.033
  7. Bhattacharyya, P. and Jha, D. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microb. Biot. 28: 1327-1350. https://doi.org/10.1007/s11274-011-0979-9
  8. Borriss, R. 2011. Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. Bacteria in agrobiology: plant growth responses. pp. 41-76. Springer.
  9. Cavaglieri, L., Orlando, J., Rodriguez, M., Chulze, S. and Etcheverry, M. 2005. Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Res. Microbial. 156: 748-754. https://doi.org/10.1016/j.resmic.2005.03.001
  10. Chen, L., Wang, N., Wang, X., Hu, J. and Wang, S. 2010. Characterization of two anti-fungal lipopeptides produced by Bacillus amyloliquefaciens SH-B10. Bioresour. Technol. 101: 8822-8827. https://doi.org/10.1016/j.biortech.2010.06.054
  11. Chitarra, G., Breeuwer, P., Nout, M., Van Aelst, A., Rombouts, F. and Abee, T. 2003. An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores. J. Appl. Microbiol. 94: 159-166. https://doi.org/10.1046/j.1365-2672.2003.01819.x
  12. Crane, J., Gibson, D., Vaughan, R. and Bergstrom, G. 2013. Iturin levels on wheat spikes linked to biological control of Fusarium head blight by Bacillus amyloliquefaciens. Phytopathology 103: 146-155. https://doi.org/10.1094/PHYTO-07-12-0154-R
  13. Fumero, M. V., Reynoso, M. M. and Chulze, S. 2015. Fusarium temperatum and Fusarium subglutinans isolated from maize in Argentina. Int. J. Food Microbiol. 199: 86-92. https://doi.org/10.1016/j.ijfoodmicro.2015.01.011
  14. Gaind, S. and Gaur, A. 1991. Thermotolerant phosphate solubilizing microorganisms and their interaction with mung bean. Plant Soil 133: 141-149. https://doi.org/10.1007/BF00011908
  15. Hertel, T. W., Golub, A. A., Jones, A. D., O'Hare, M., Plevin, R. J. and Kammen, D. M. 2010. Effects of US maize ethanol on global land use and greenhouse gas emissions: estimating marketmediated responses. BioScience 60: 223-231. https://doi.org/10.1525/bio.2010.60.3.8
  16. Howard, R. J. and Ferrari, M. A. 1989. Role of melanin in appressorium function. Exp. Mycol. 13: 403-418. https://doi.org/10.1016/0147-5975(89)90036-4
  17. Kim, B. Y., Ahn, J. H. Weon, H. Y., Song, J., Kim, S. I. and Kim, W. G. 2012. Isolation and characterization of Bacillus species possessing antifungal activity against ginseng root rot pathogens. Korean J. Pestic. Sci. 16: 357-363. https://doi.org/10.7585/kjps.2012.16.4.357
  18. Kim, S. L., Moon, H. G. and Ryu, Y. H. 2002. Current status and prospect of quality evaluation in maize. Korean J. Crop Sci. 47: 107-123.
  19. Kloepper, J. W., Leong, J., Teintze, M. and Schroth, M. N. 1980. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286: 885-886. https://doi.org/10.1038/286885a0
  20. Kriek, N., Marasas, W., Steyn, P., Van Rensburg, S. and Steyn, M. 1977. Toxicity of a moniliformin-producing strain of Fusarium moniliforme var. subglutinans isolated from maize. Food Cosmet. Toxicol. 15: 579-587. https://doi.org/10.1016/0015-6264(77)90073-6
  21. Kwak, Y. K., Kim, I. S., Cho, M. C., Lee, S. C. and Kim, S. 2012. Growth inhibition effect of environment-friendly farm materials in Colletotrichum acutatum in vitro J. Bio-Environ. Control 21: 127-133.
  22. Lemanceau, P. and Alabouvette, C. 1991. Biological control of Fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium. Crop Prot. 10: 279-286. https://doi.org/10.1016/0261-2194(91)90006-D
  23. Lew, H., Chelkowski, J., Pronczuk, P. and Edinger, W. 1996. Occurrence of the mycotoxin moniliformin in maize (Zea mays L.) ears infected by Fusarium subglutinans (Wollenw. & Reinking) Nelson et al. Food Addit. Contam. 13: 321-324. https://doi.org/10.1080/02652039609374414
  24. Lobell, D. B., Cassman, K. G. and Field, C. B. 2009. Crop yield gaps: their importance, magnitudes, and causes. Annu. Rev. Environ. Resour. 34: 179. https://doi.org/10.1146/annurev.environ.041008.093740
  25. Madhaiyan, M., Poonguzhali, S., Kwon, S.-W. and Sa, T.-M. 2010. Bacillus methylotrophicus sp. nov., a methanol-utilizing, plantgrowth-promoting bacterium isolated from rice rhizosphere soil. Int. J. Syst. Evol. Microbiol. 60: 2490-2495. https://doi.org/10.1099/ijs.0.015487-0
  26. Nakamura, A., Uozumi, T. and Beppu, T. 1987. Nucleotide sequence of a cellulase gene of Bacillus subtilis. Eur. J. Biochem. 164: 317-320. https://doi.org/10.1111/j.1432-1033.1987.tb11060.x
  27. Nawani, N. and Kaur, J. 2000. Purification, characterization and thermostability of lipase from a thermophilic Bacillus sp. J33. Mol. Cell. Biochem. 206: 91-96. https://doi.org/10.1023/A:1007047328301
  28. Nirenberg, H. I. and O'Donnell, K. 1998. New Fusarium species and combinations within the Gibberella fujikuroi species complex. Mycologia 90: 434-458. https://doi.org/10.2307/3761403
  29. Oerke, E. C. 2006 Crop losses to pests. Thai J. Agric. Sci. 144: 31-43. https://doi.org/10.1017/S0021859605005708
  30. Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125. https://doi.org/10.1016/j.tim.2007.12.009
  31. Patrick, W. and Khalid, R. 1974. Phosphate release and sorption by soils and sediments: effect of aerobic and anaerobic conditions. Science 186: 53-55. https://doi.org/10.1126/science.186.4158.53
  32. Qiao, J. Q., Wu, H. J., Huo, R., Gao, X. W. and Borriss, R. 2014. Stimulation of plant growth and biocontrol by Bacillus amyloliquefaciens subsp. plantarum FZB42 engineered for improved action. Chem. Biol. Technol. Agric. 1: 1-14. https://doi.org/10.1186/2196-5641-1-1
  33. Reid, L. M. and Zhu, X. 2004. Common diseases of silage corn in Canada. Bull. Agriculture and Agri-Food, Canada, Ottawa, Ontario.
  34. Rodriguez, H. and Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17: 319-339. https://doi.org/10.1016/S0734-9750(99)00014-2
  35. Sazci, A., Erenler, K. and Radford, A. 1986. Detection of cellulolytic fungi by using congo red as an indicator: a comparative study with the dinitrosalicyclic acid reagent method. J. Appl. Bacteriol. 61: 559-562. https://doi.org/10.1111/j.1365-2672.1986.tb01729.x
  36. Scauflaire, J., Gourgue, M., Callebaut, A. and Munaut, F. 2012. Fusarium temperatum, a mycotoxin-producing pathogen of maize. Eur. J. Plant Pathol. 133: 911-922. https://doi.org/10.1007/s10658-012-9958-8
  37. Scauflaire, J., Gourgue, M. and Munaut, F. 2011. Fusarium temperatum sp. nov. from maize, an emergent species closely related to Fusarium subglutinans. Mycologia 103: 586-597. https://doi.org/10.3852/10-135
  38. Shan, H., Zhao, M., Chen, D., Cheng, J., Li, J., Feng, Z., Ma, Z. and An, D. 2013. Biocontrol of rice blast by the phenaminomethylacetic acid producer of Bacillus methylotrophicus strain BC79. Crop Prot. 44: 29-37. https://doi.org/10.1016/j.cropro.2012.10.012
  39. Shin, J. H., Han, J. H., Kim, M. J., Kim, J. O. and Kim, K. S. 2014a. Identification of Fusarium subglutinans, the casual pathogen of corn stalk rot in Korea and investigation of effectiveness of fungicides against the pathogen. J. Agric. Life Sci. 48: 43-51. https://doi.org/10.14397/jals.2014.48.3.43
  40. Shin, J. H., Han, J. H., Lee, J. K. and Kim, K. S. 2014b. Characterization of the maize stalk rot pathogens Fusarium subglutinans and F. temperatum and the effect of fungicides on their mycelial growth and colony formation. Plant Pathol. J. 30: 397-406. https://doi.org/10.5423/PPJ.OA.08.2014.0078
  41. Sivan, A., Ucko, O. and Chet, I. 1987. Biological control of Fusarium crown rot of tomato by Trichoderma harzianum under field conditions. Plant Dis. 71: 587-592. https://doi.org/10.1094/PD-71-0587
  42. Smith, T. J., Blackman, S. A. and Foster, S. J. 2000. Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology 146: 249-262. https://doi.org/10.1099/00221287-146-2-249
  43. Sun, L., Lu, Z., Bie, X., Lu, F. and Yang, S. 2006. Isolation and characterization of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World J. Microb. Biot. 22: 1259-1266. https://doi.org/10.1007/s11274-006-9170-0
  44. The Korean Society of Plant Pathology. 2004. List of plant disease in Korea, fourth edition. pp. 45-47.
  45. Thippeswamy, S., Girigowda, K. and Mulimani, V. 2014, Isolation and identification of ${\alpha}$-amylase producing Bacillus sp. from dhal industry waste. Indian J. Biochem. Biophys. 43: 295-298.
  46. Varela, C. P., Casal, O. A., Padin, M. C., Martinez, V. F., Oses, M. S., Scauflaire, J., Munaut, F., Castro, M. B. and Vazquez, J. P. 2013. First report of fusarium temperatum causing seedling blight and stalk rot on maize in Spain. Plant Dis. 97: 1252-1252.
  47. Varshney, R. K., Ribaut, J. M. Buckler, E. S., Tuberosa, R., Rafalski, J. A. and Langridge, P. 2012. Can genomics boost productivity of orphan crops? Nat. Biotechnol. 30: 1172-1176. https://doi.org/10.1038/nbt.2440
  48. Wang, J. H., Zhang, J. B., Li, H. P., Gong, A. D., Xue, S., Agboola R. S. and Liao, Y. C. 2014. Molecular identification, mycotoxin production and comparative pathogenicity of Fusarium temperatum isolated from maize in China. J. Phytopathol. 162: 147-157. https://doi.org/10.1111/jph.12164
  49. Watanabe, M., Yonezawa, T., Lee, K. I., Kumagai, S., Sugita-Konishi, Y. Goto, K. and Hara-Kudo, Y. 2011. Molecular phylogeny of the higher and lower taxonomy of the Fusarium genus and differences in the evolutionary histories of multiple genes. BMC Evol. Biol. 11: 322. https://doi.org/10.1186/1471-2148-11-322
  50. Watanabe, T., Kobori, K., Miyashita, K., Fujii, T., Sakai, H., Uchida, M. and Tanaka, H. 1993. Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinase activity. J. Biol. Chem. 268: 18567-18572.
  51. Yoo, J. H., Park, I. C. and Kim, W. G. 2012. Biocontrol of anthracnose of chili pepper by Bacillus sp. NAAS-1. Korean J. Mycol. 40: 277-281. https://doi.org/10.4489/KJM.2012.40.4.277
  52. Yuan, J., Raza, W., Shen, Q. and Huang, Q. 2012. Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Appl. Environ. Microbiol. 78: 5942-5944. https://doi.org/10.1128/AEM.01357-12