Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Adhikari, R.S., Bagchi, A. and Moselhi, O. (2014), "Automated condition assessment of concrete bridges with digital imaging", Smart Struct. Syst., 13(6), 901-925. https://doi.org/10.12989/sss.2014.13.6.901
- Busca, G., Cigada, A., Mazzoleni, P. and Zappa, E. (2014), "Vibration monitoring of multiple bridge points by means of a unique vision-based measuring system", Exp. Mech., 54(2), 255-271. https://doi.org/10.1007/s11340-013-9784-8
- Cho, S., Sim, S.H., Park, J.W. and Lee, J. (2014), "Extension of indirect displacement estimation method using acceleration and strain to various types of beam structures", Smart Struct. Syst., 14(4), 699-718. https://doi.org/10.12989/sss.2014.14.4.699
- Gales, J.A., Bisby, L.A. and Stratford, T. (2012), "New parameters to describe high-temperature deformation of prestressing steel determined using digital image correlation", Struct. Eng. Int., 22(4), 476-486. https://doi.org/10.2749/101686612X13363929517730
- German, S., Jeon, J.S., Zhu, Z.H., Bearman, C., Brilakis, I., DesRoches, R. and Lowes, L. (2013), "Machine vision-enhanced postearthquake inspection", J. Comput. Civil Eng. - ASCE, 27(6), 622-634. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000333
- Gonzalez, R.C. and Woods, R.E. (2008), Digital Image Processing, 3rd Ed., Pearson Prentice Hall, Upper Saddle River, NJ.
- Ho, H.N., Kim, K.D., Park, Y.S. and Lee, J.J. (2013), "An efficient image-based damage detection for cable surface in cable-stayed bridges", NDT&E Int., 58, 18-23. https://doi.org/10.1016/j.ndteint.2013.04.006
- Im, S.B., Hurlebaus, S. and Kang, Y.J. (2013), "Summary review of GPS technology for structural health monitoring", J. Struct. Eng.- ASCE, 139(10), 1653-1664. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000475
- Jauregui, D.V., White, K.R., Woodward, C.B. and Leitch, K.R. (2003), "Noncontact photogrammetric measurement of vertical bridge deflection", J. Bridge Eng. - ASCE, 8(4), 212-222. https://doi.org/10.1061/(ASCE)1084-0702(2003)8:4(212)
- Jeon, H., Kim, Y., Lee, D. and Myung, H. (2014), "Vision-based remote 6-DOF structural displacement monitoring system using a unique marker", Smart Struct. Syst., 13(6), 927-942. https://doi.org/10.12989/sss.2014.13.6.927
- Kaito, K., Abe, M. and Fujino, Y. (2005), "Development of non-contact scanning vibration measurement system for real-scale structures", Struct. Infrastruct. E., 1(3), 189-205. https://doi.org/10.1080/15732470500030661
- Koch, C., Paal, S.G., Rashidi, A., Zhu, Z., Konig, M. and Brilakis, I. (2014), "Achievements and challenges in machine vision-based inspection of large concrete structures", Adv. Struct. Eng., 17(3), 303-318. https://doi.org/10.1260/1369-4332.17.3.303
- Kohut, P., Holak, K., Uhl, T., Ortyl, L., Owerko, T., Kuras, P. and Kocierz, R. (2013), "Monitoring of a civil structure's state based on noncontact measurements", Struct. Health Monit., 12(5-6), 411-429. https://doi.org/10.1177/1475921713487397
- Lee, J.H., Ho, H.N., Shinozuka, M. and Lee, J.J. (2012), "An advanced vision-based system for real-time displacement measurement of high-rise builidings", Smart Mater. Struct., 21, 1-11.
- Lee, J.J. and Shinozuka, M. (2006), "A vision-based system for remote sensing of bridge displacement", NDT&E Int., 39(5), 425-431. https://doi.org/10.1016/j.ndteint.2005.12.003
- Li, Y.L., Qiang, S.Z., Liao, H.L. and Xu, Y.L. (2006), "Dynamics of wind-rail vehicle-bridge systems", J. Wind Eng. Ind. Aerod., 93, 483-507.
- Li, Y.L., Hu, P., Cai, C.S. and Qiang, S.Z. (2013a), "Wind tunnel study of sudden change of vehicle wind loads due to windshield effects of bridge towers and passing vehicles", J. Eng. Mech.- ASCE, 139(9), 1249-1259 https://doi.org/10.1061/(ASCE)EM.1943-7889.0000559
- Li, Y.L., Xiang, H.Y., Wang, B., Xu, Y.L. and Qiang. S.Z. (2013b), "Dynamic analysis of wind-vehicle-bridge system with two trains interaction", Adv. Struct. Eng., 16(10), 1663-1670. https://doi.org/10.1260/1369-4332.16.10.1663
- Li, Q., Wang, S.G., Guan, B.Q. and Wang, G.B. (2007), "A machine vision method for the measurement of vibration amplitude", Meas. Sci. Technol., 18, 1477-1486. https://doi.org/10.1088/0957-0233/18/5/038
- Liu, Y.F., Cho, S., Spencer, B.F. and Fan, J.S. (2014), "Automated assessment of cracks on concrete surfaces using adaptive digital image processing", Smart Struct. Syst., 14(4), 719-741. https://doi.org/10.12989/sss.2014.14.4.719
- Mazzoleni, P. and Zappa, E. (2012), "Vision-based estimation of vertical dynamic loading induced by jumping and bobbing crowds on civil structures", Mech. Syst. Signal Pr., 33, 1-12. https://doi.org/10.1016/j.ymssp.2012.06.009
- McCormick, N., Owens, A. and Waterfall, P. (2014), "Optical imaging for low-cost structural measurements", Proceedings of the Institution of Civil Engineers: Bridge Engineering, 167(1), 33-42.
- Meng, X., Dodson, A.H. and Roberts, G.W. (2007), "Detecting bridge dynamics with GPS and triaxial accelerometers", Eng. Struct., 29(11), 3178-3184. https://doi.org/10.1016/j.engstruct.2007.03.012
- Moschas, F. and Stiros, S. (2011), "Measurement of the dynamic displacements and of the modal frequencies of a short-span pedestrian bridge using GPS and an accelerometer", Eng. Struct., 33(1), 10-17. https://doi.org/10.1016/j.engstruct.2010.09.013
- Nakamura, S.I. (2000), "GPS measurement of wind-induced suspension bridge girder displacements", J. Struct. Eng. - ASCE, 126(12), 1413-1419. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:12(1413)
- Ni, Y.Q., Ye, X.W. and Ko, J.M. (2010), "Monitoring-based fatigue reliability assessment of steel bridges: analytical model and application", J. Struct. Eng. - ASCE, 136(12), 1563-1573. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000250
- Ni, Y.Q., Ye, X.W. and Ko, J.M. (2012), "Modeling of stress spectrum using long-term monitoring data and finite mixture distributions", J. Eng. Mech.- ASCE, 138(2), 175-183. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000313
- Park, J.W., Lee, J.J., Jung, H.J. and Myung, H. (2010), "Vision-based displacement measurement method for high-rise building structures using partitioning approach", NDT&E Int., 43(7), 642-647. https://doi.org/10.1016/j.ndteint.2010.06.009
- Payo, I. and Feliu, V. (2014), "Strain gauges based sensor system for measuring 3-D deflections of flexible beams", Sensor Actuat. A Phys., 217, 81-94. https://doi.org/10.1016/j.sna.2014.06.014
- Poudel, U.P., Fu, G. and Ye, J. (2005), "Structural damage detection using digital video imaging technique and wavelet transformation", J. Sound Vib., 286(4-5), 869-895. https://doi.org/10.1016/j.jsv.2004.10.043
- Ribeiro, D., Calcada, R., Ferreira, J. and Martins, T. (2014), "Non-contact measurement of the dynamic displacement of railway bridges using an advanced video-based system", Eng. Struct., 75, 164-180. https://doi.org/10.1016/j.engstruct.2014.04.051
- Santos, C.A., Costa, C.O. and Batista, J.P. (2012), "Calibration methodology of a vision system for measuring the displacements of long-deck suspension bridges", Struct. Control Health Monit., 19(3), 385-404. https://doi.org/10.1002/stc.438
- Wang, Y. and Cuitino, A.M. (2002), "Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlation", Int. J. Solids Struct., 39(13-14), 3777-3796. https://doi.org/10.1016/S0020-7683(02)00176-2
- Winkler, J., Fischer, G. and Georgakis, C.T. (2014), "Measurement of local deformation in steel monostrands using digital image correlation", J. Bridge Eng.- ASCE, 19(10), 1-9. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000561
- Wu, L.J., Casciati, F. and Casciati, S. (2014), "Dynamic testing of a laboratory model via vision-based sensing", Eng. Struct., 60, 113-125. https://doi.org/10.1016/j.engstruct.2013.12.002
- Yi, T.H., Li, H.N. and Gu, M. (2011), "Optimal sensor placement for structural health monitoring based on multiple optimization strategies", Struct. Des. Tall Spec. Build., 20(7), 881-900. https://doi.org/10.1002/tal.712
- Yi, T.H., Li, H.N. and Zhang, X.D. (2012), "A modified monkey algorithm for optimal sensor placement in structural health monitoring", Smart Mater. Struct., 21(10), 1-9.
- Yi, T.H., Li, H.N. and Gu, M. (2013), "Experimental assessment of high-rate GPS receivers for deformation monitoring of bridge", Measurement, 46(1), 420-432. https://doi.org/10.1016/j.measurement.2012.07.018
- Ye, X.W., Ni, Y.Q., Wong, K.Y. and Ko, J.M. (2012), "Statistical analysis of stress spectra for fatigue life assessment of steel bridges with structural health monitoring data", Eng. Struct., 45, 166-176. https://doi.org/10.1016/j.engstruct.2012.06.016
- Ye, X.W., Ni, Y.Q., Wai, T.T., Wong, K.Y., Zhang, X.M. and Xu, F. (2013), "A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification", Smart Struct. Syst., 12(3-4), 363-379. https://doi.org/10.12989/sss.2013.12.3_4.363
- Ye, X.W., Su, Y.H. and Han, J.P. (2014), "Structural health monitoring of civil infrastructure using optical fiber sensing technology: A comprehensive review", Sci. World J., 2014, Article ID 652329, 1-11.
- Zaurin, R. and Catbas, F.N. (2010), "Integration of computer imaging and sensor data for structural health monitoring of bridges", Smart Mater. Struct., 19(1), 1-15.
Cited by
- Improved independent component analysis based modal identification of higher damping structures vol.88, 2016, https://doi.org/10.1016/j.measurement.2016.03.021
- Surface flatness and distortion inspection of precast concrete elements using laser scanning technology vol.18, pp.3, 2016, https://doi.org/10.12989/sss.2016.18.3.601
- Vision-based structural displacement measurement: System performance evaluation and influence factor analysis vol.88, 2016, https://doi.org/10.1016/j.measurement.2016.01.024
- Measurement of rivulet movement and thickness on inclined cable using videogrammetry vol.18, pp.3, 2016, https://doi.org/10.12989/sss.2016.18.3.485
- Force monitoring of steel cables using vision-based sensing technology: methodology and experimental verification vol.18, pp.3, 2016, https://doi.org/10.12989/sss.2016.18.3.585
- Identification of structural dynamic characteristics based on machine vision technology 2018, https://doi.org/10.1016/j.measurement.2017.09.043
- Image-based structural dynamic displacement measurement using different multi-object tracking algorithms vol.17, pp.6, 2016, https://doi.org/10.12989/sss.2016.17.6.935
- A Review of Machine Vision-Based Structural Health Monitoring: Methodologies and Applications vol.2016, 2016, https://doi.org/10.1155/2016/7103039
- Statistical analysis and probabilistic modeling of WIM monitoring data of an instrumented arch bridge vol.17, pp.6, 2016, https://doi.org/10.12989/sss.2016.17.6.1087
- Statistical Analysis of Stress Signals from Bridge Monitoring by FBG System vol.18, pp.2, 2018, https://doi.org/10.3390/s18020491
- Application of the Digital Image Technology in the Visual Monitoring and Prediction of Shuttering Construction Safety vol.128, pp.1755-1315, 2018, https://doi.org/10.1088/1755-1315/128/1/012059
- Marker-free monitoring of the grandstand structures and modal identification using computer vision methods pp.1741-3168, 2018, https://doi.org/10.1177/1475921718806895
- Analysis and probabilistic modeling of wind characteristics of an arch bridge using structural health monitoring data during typhoons vol.63, pp.6, 2015, https://doi.org/10.12989/sem.2017.63.6.809
- Structural health monitoring data reconstruction of a concrete cable-stayed bridge based on wavelet multi-resolution analysis and support vector machine vol.20, pp.5, 2015, https://doi.org/10.12989/cac.2017.20.5.555
- Structural performance monitoring of an urban footbridge vol.5, pp.1, 2015, https://doi.org/10.12989/smm.2018.5.1.129
- System Identification of Large-Scale Bridges Using Target-Tracking Digital Image Correlation vol.5, pp.None, 2019, https://doi.org/10.3389/fbuil.2019.00085
- A Robust Vision-Based Method for Displacement Measurement under Adverse Environmental Factors Using Spatio-Temporal Context Learning and Taylor Approximation vol.19, pp.14, 2015, https://doi.org/10.3390/s19143197
- A review on deep learning-based structural health monitoring of civil infrastructures vol.24, pp.5, 2015, https://doi.org/10.12989/sss.2019.24.5.567
- Flexible camera series network for deformation measurement of large scale structures vol.24, pp.5, 2015, https://doi.org/10.12989/sss.2019.24.5.587
- Development of monocular video deflectometer based on inclination sensors vol.24, pp.5, 2015, https://doi.org/10.12989/sss.2019.24.5.607
- A completely non-contact recognition system for bridge unit influence line using portable cameras and computer vision vol.24, pp.5, 2019, https://doi.org/10.12989/sss.2019.24.5.617
- Drift error compensation for vision-based bridge deflection monitoring vol.24, pp.5, 2015, https://doi.org/10.12989/sss.2019.24.5.649
- A non-target structural displacement measurement method using advanced feature matching strategy vol.22, pp.16, 2019, https://doi.org/10.1177/1369433219856171
- Machine learning approaches for wind speed forecasting using long-term monitoring data: a comparative study vol.24, pp.6, 2015, https://doi.org/10.12989/sss.2019.24.6.733
- A vision-based system for long-distance remote monitoring of dynamic displacement: experimental verification on a supertall structure vol.24, pp.6, 2015, https://doi.org/10.12989/sss.2019.24.6.769
- Test on the anchoring components of steel shear keys in precast shear walls vol.24, pp.6, 2019, https://doi.org/10.12989/sss.2019.24.6.783
- Structural displacement monitoring using deep learning-based full field optical flow methods vol.16, pp.1, 2020, https://doi.org/10.1080/15732479.2019.1650078
- Computer Vision-Based Human Comfort Assessment of Stadiums vol.34, pp.2, 2015, https://doi.org/10.1061/(asce)cf.1943-5509.0001345
- Streamlined bridge inspection system utilizing unmanned aerial vehicles (UAVs) and machine learning vol.164, pp.None, 2020, https://doi.org/10.1016/j.measurement.2020.108048
- 3D modelling and visualization for Vision-based Vibration Signal Processing and Measurement vol.30, pp.1, 2015, https://doi.org/10.1515/jisys-2020-0123
- A review of computer vision-based structural health monitoring at local and global levels vol.20, pp.2, 2015, https://doi.org/10.1177/1475921720935585
- Port Structure Inspection Based on 6-DOF Displacement Estimation Combined with Homography Formulation and Genetic Algorithm vol.11, pp.14, 2021, https://doi.org/10.3390/app11146470
- Homography‐based structural displacement measurement for large structures using unmanned aerial vehicles vol.36, pp.9, 2021, https://doi.org/10.1111/mice.12645