References
- Batista, M. (2011), Meritev obnasanja tovarnega vozila pri mocni burji na cestnem odseku hitre ceste Razdrto-Vipava-Ajdovscin, Portoroz, Slovenia.
- Biancolini, M.E. (2012), "Mesh morphing and smoothing by means of radial basis functions (RBF): a practical example using Fluent and RBF Morph", Handbook of Research on Computational Science and Engineering, 347-380.
- Biancolini, M., Biancolini, C., Costa, E.G.D. and Valentini, P. (2009), "Industrial application of the meshless morpher RBF morph to a motorbike windshield optimisation", Proceedings of The European Automotive Simulation Conference, Munich.
- Biancolini, M., Viola, I. and Riotte, M. (2014), "Sails trim optimisation using CFD and RBF mesh morphing", Comput Fluids, 93, 46-60. https://doi.org/10.1016/j.compfluid.2014.01.007
- Bourdin, P., and Wilson, J. D. (2008), "Windbreak aerodynamics: is computational fluid dynamics reliable? ", Bound. - Lay. Meteorol., 126(2), 181-208. https://doi.org/10.1007/s10546-007-9229-y
- Bradley, E. and Mulhearn, P. (1983), "Development of velocity and shear stress distributions in the wake of a porous shelter fence", J. Wind Eng. Ind. Aerod., 15(1-3), 145-156. https://doi.org/10.1016/0167-6105(83)90185-X
- Cella, U.B. and Biancolini, M. (2012), "Aeroelastic analysis of aircraft wind-tunnel model coupling structural and fluid dynamic codes", J. Aircraft, 49(2), 407-414. https://doi.org/10.2514/1.C031293
- de Boer, A., van der Schoot, M. and Bijl, H. (2007), "Mesh deformation based on radial basis function interpolation", Comput Struct., 85(11-14), 784-795. https://doi.org/10.1016/j.compstruc.2007.01.013
- Dong, Z., Luo, W., Qian, G. and Wang, H. (2007), "A wind tunnel simulation of the mean velocity fields behind upright porous fence", Agric. For. Meterol., 146(1-2), 82-93. https://doi.org/10.1016/j.agrformet.2007.05.009
- Estruch, O., Lehmkuhl, O., Borrell, R., Perez Segarra, C. and Oliva, A. (2012), "A parallel radial basis function interpolation method for unstructured dynamic meshes", Comput Fluids, 10, 44-54.
- Fang, F.M. and Wang, D.Y. (1997), "On the flow around a vertical porous fence", J. Wind Eng. Ind. Aerod., 67-68, 415-424. https://doi.org/10.1016/S0167-6105(97)00090-1
- Huang, L.M., Chan, H.C. and Lee, J.T. (2012), "A numerical study on flow around nonuniform porous fences", J. Appl. Math., 2012.
- Khondge, A. and Sovani, S. (2012), An accurate, extensive, and rapid method for aerodynamics optimization: The 50:50:50 Method, SAE Technical Paper.
- Lee, S.J. and Kim, H.B. (1999), "Laboratory measurements of velocity and turbulence field behind porous fences", J. Wind Eng. Ind. Aerod., 80(3), 311-326. https://doi.org/10.1016/S0167-6105(98)00193-7
- Masud, A., Bhanabhagvanwala, M. and Khurram, R.A. (2007), "An adaptive mesh rezoning scheme for moving boundary flows and fluid-structure interaction", Comput Fluids, 36(1), 77-91. https://doi.org/10.1016/j.compfluid.2005.07.013
- Menter, F.R. (1994), "Two-equation eddy-viscosity turbulence models for engineering applications", AIAA J., 32(8), 1598-1605. https://doi.org/10.2514/3.12149
- Menter, F.R., Kuntz, M. and Langtry, R. (2003), Ten years of industrial experience with the SST turbulence model,Turbulence, Heat and Mass Transfer.
- Packwood, A. (2000), "Flow through porous fences in thick boundary layers: comparisons between laboratory and numerical experiments", J. Wind Eng. Ind. Aerod., 88(1), 75-90. https://doi.org/10.1016/S0167-6105(00)00025-8
- Rendall, T. and Allen, C. (2009), "Efficient mesh motion using radial basis functions with data reduction algorithms", J. Comput. Phys., 228(17), 6231-6249. https://doi.org/10.1016/j.jcp.2009.05.013
- Rendall, T. and Allen, C. (2010), "Reduced surface point selection options for efficient mesh deformation using radial basis functions", J. Comput. Phys., 229(8), 2810-2820. https://doi.org/10.1016/j.jcp.2009.12.006
- Roy, S. and Srinivasan. (2000), External flow analysis of a truck for drag reduction, SAE.
- Sederberg, T.W.P. and Parry, S.R. (1986), "Free-form deformation of solid geometric models", Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '86), 151-160. New York, (Eds., D.C. Evans and R.J. Athay). ACM.
- Telenta, M., Duhovnik, J., Kosel, F. and Sajn, V. (2013), "Wake interaction of a rectangular prism behind a geometrically accurate porous barrier", Technical Gazette, 20(5), 877-882.
- Telenta, M., Duhovnik, J., Kosel, F. and Sajn, V. (2014), "Numerical and experimental study of the flow through a geometrically accurate porous wind barrier model", J. Wind Eng. Ind. Aerod., 124, 99-108. https://doi.org/10.1016/j.jweia.2013.11.010
- Van Renterghem, T. and Botteldooren, D. (2002), "Reducing screen-induced refraction of noise barriers in wind by vegetative screens", Acta Acust. United Acust., 88(2), 231-238.
- Wakeland, R. and Keolian, R. (2003), "Measurements of resistance of individual square-mesh screens to oscillating flow at low and intermediate reynolds numbers", J. Fluid. Eng. - T ASME, 5(125), 851-862.
Cited by
- A new meshless approach to map electromagnetic loads for FEM analysis on DEMO TF coil system vol.100, 2015, https://doi.org/10.1016/j.fusengdes.2015.06.031
- RBF-based mesh morphing approach to perform icing simulations in the aviation sector pp.0002-2667, 2019, https://doi.org/10.1108/AEAT-07-2018-0178
- Wind tunnel tests on flow fields of full-scale railway wind barriers vol.24, pp.2, 2015, https://doi.org/10.12989/was.2017.24.2.171
- Fast interactive CFD evaluation of hemodynamics assisted by RBF mesh morphing and reduced order models: the case of aTAA modelling vol.14, pp.4, 2020, https://doi.org/10.1007/s12008-020-00694-5
- Wind Tunnel Test on Local Wind Field around the Bridge Tower of a Truss Girder vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/8867668
- Research on wind barrier of canyon bridge-tunnel junction based on wind characteristics vol.24, pp.5, 2015, https://doi.org/10.1177/1369433220971730
- Influences of Wind Barriers on the Train Running Safety on a Highway-Railway One-Story Bridge vol.21, pp.14, 2015, https://doi.org/10.1142/s0219455421400095