Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Bowen, A.J. (2003), "Modelling of strong wind flows over complex terrain at small geometric scales", J. Wind Eng. Ind. Aerod., 91(12-15), 1859-1871. https://doi.org/10.1016/j.jweia.2003.09.029
- Bowen, A.J. and Lindley, D. (1977), "A wind-tunnel investigation of the wind speed and turbulence characteristics close to the ground over various escarpment shapes", Bound. - Lay. Meteorol., 12(3), 259-271. https://doi.org/10.1007/BF00121466
- Cao, S. and Tamura, T. (2006), "Experimental study on roughness effects on turbulent boundary layer flow over a two-dimensional steep hill", J. Wind Eng. Ind. Aerod., 94(1), 1-19. https://doi.org/10.1016/j.jweia.2005.10.001
- Carpenter, P. and Locke, N. (1999), "Investigation of wind speeds over multiple two-dimensional hills", J. Wind Eng. Ind. Aerod., 83(1-3), 109-120. https://doi.org/10.1016/S0167-6105(99)00065-3
- Cermak, J.E. (1984), "Physical modelling of flow and dispersion over complex terrain", Bound. - Lay. Meteorol., 30(1-4), 261-292. https://doi.org/10.1007/BF00121957
- Chock, G.Y.K. and Cochran, L. (2005), "Modeling of topographic wind speed effects in Hawaii", J. Wind Eng. Ind. Aerod., 93(8), 623-638. https://doi.org/10.1016/j.jweia.2005.06.002
- Currie, I.G. (2003), Fundamental Mechanics of Fluids, (3th Ed.), CRC Press, Boca Raton, Florida, USA.
- Derickson, R.G. and Peterka, J.A. (2004), "Development of a powerful hybrid tool for evaluating wind power in complex terrain: atmospheric numerical models and wind tunnels", Proceedings of the 23rd ASME Wind Energy Symposium, Reno, Nevada, USA, January.
- Hu, F.Q., Chen, A.R. and Wang D.L. (2006), "Experimental study of wind field in bridge site located in mountainous area", J. Tongji Univ. Natural Sci., 34(6), 721-725 (in Chinese).
- Hu, P., Li, Y.L. and Liao, H.L. (2012), "Appropriate shape of boundary transition section of terrain model for mountains-gorge bridge site", Proceedings of the 7th International Colloquium on Bluff Body Aerodynamics and Applications, Shanghai, China, September.
- Hui, M.C.H., Larsen, A. and Xiang, H.F. (2009), "Wind turbulence characteristics study at the Stonecutters Bridge site: Part I-Mean wind and turbulence intensities", J. Wind Eng. Ind. Aerod., 97(1), 22-36. https://doi.org/10.1016/j.jweia.2008.11.002
- Hunt, J.C.R., Leibovich, S. and Richards, K.J. (1988), "Turbulent shear flow over low hills", Q. J. Roy. Meteorol. Soc., 114(484), 1435-1470. https://doi.org/10.1002/qj.49711448405
- Iizuka, S. and Kondo, H. (2004), "Performance of various sub-grid scale models in large-eddy simulations of turbulent flow over complex terrain", Atmos. Environ., 38(40), 7083-7091. https://doi.org/10.1016/j.atmosenv.2003.12.050
- Jackson, P.S. and Hunt, J.C.R. (1975), "Turbulent wind flow over a low hill", Q. J. Roy. Meteorol. Soc., 101(430), 929-955. https://doi.org/10.1002/qj.49710143015
- Kim, H.G., Patel, V.C. and Lee C.M. (2000), "Numerical simulation of wind flow over hilly terrain", J. Wind Eng. Ind. Aerod., 87(1), 45-60. https://doi.org/10.1016/S0167-6105(00)00014-3
- Kondo, K., Tsuchiya, M. and Sanada, S. (2002), "Evaluation of effect of micro-topography on design wind velocity", J. Wind Eng. Ind. Aerod., 90(12-15), 1707-1718. https://doi.org/10.1016/S0167-6105(02)00281-7
- Kundu, P.K. and Cohen, I.M. (2008), Fluid Mechanics, (4th Ed.), Academic Press, Burlington, Massachusetts, USA.
- Li, C.G., Chen, Z.Q., Zhang, Z.T. and Cheung, J.C.K. (2010a), "Wind tunnel modeling of flow over mountainous valley terrain", Wind Struct., 13(3), 275-292. https://doi.org/10.12989/was.2010.13.3.275
- Li, L., Zhang, L.J., Zhang, N., Hu, F., Jiang, Y., Xuan, C.Y. and Jiang, W.M. (2010b), "Study on the micro-scale simulation of wind field over complex terrain by RAMS/FLUENT modeling system", Wind Struct., 13(6), 519-528. https://doi.org/10.12989/was.2010.13.6.519
- Loureiro, J.B.R., Alho, A.T.P. and Silva Freire, A.P. (2008), "The numerical computation of near-wall turbulent flow over a steep hill", J. Wind Eng. Ind. Aerod., 96(5), 540-561. https://doi.org/10.1016/j.jweia.2008.01.011
- Mason, P. and Sykes, R. (1979), "Flow over an isolated hill of moderate slope", Q. J. Roy. Meteorol. Soc., 105(444), 383-395. https://doi.org/10.1002/qj.49710544405
- Maurizi, A., Palma, J.M.L.M. and Castro F.A. (1998), "Numerical simulation of the atmospheric flow in a mountainous region of the North of Portugal", J. Wind Eng. Ind. Aerod., 74-76, 219-228. https://doi.org/10.1016/S0167-6105(98)00019-1
- Meroney, R.N. (1980), "Wind-tunnel simulation of the flow over hills and complex terrain", J. Wind Eng. Ind. Aerod., 5(3-4), 297-321. https://doi.org/10.1016/0167-6105(80)90039-2
- Neal, D., Stevenson, D.C. and Lindley, D. (1981), "A wind tunnel boundary-layer simulation of wind flow over complex terrain: Effect of terrain and model construction", Bound. Lay. Meteorol., 21(3), 271-293. https://doi.org/10.1007/BF00119274
- OriginLab Corporation. (2010), Origin Reference for Origin 8.5 SR1, Northampton, Massachusetts, USA.
- Tsang, C.F., Kwok, K.C.S., Hitchcock, P.A. and Hui, D.K.K. (2009), "Large eddy simulation and wind tunnel study of an uphill slope in a complex terrain", Wind Struct., 12(3), 219-237. https://doi.org/10.12989/was.2009.12.3.219
Cited by
- Numerical Simulation of Wind Fields at the Bridge Site in Mountain-Gorge Terrain Considering an Updated Curved Boundary Transition Section vol.31, pp.3, 2018, https://doi.org/10.1061/(ASCE)AS.1943-5525.0000830
- Wind tunnel test and numerical simulation of wind characteristics at a bridge site in mountainous terrain vol.20, pp.8, 2017, https://doi.org/10.1177/1369433216673377
- Investigation of the longitudinal wind power spectra at the gorge terrain vol.20, pp.11, 2017, https://doi.org/10.1177/1369433217693632
- Wind characteristics at bridge site in a deep-cutting gorge by wind tunnel test vol.160, 2017, https://doi.org/10.1016/j.jweia.2016.11.002
- Numerical simulations of the mean wind speeds and turbulence intensities over simplified gorges using the SST k-ω turbulence model vol.10, pp.1, 2016, https://doi.org/10.1080/19942060.2016.1169947
- Wind tunnel tests on the characteristics of wind fields over a simplified gorge vol.20, pp.10, 2017, https://doi.org/10.1177/1369433216680635
- Wind tunnel study of wind structure at a mountainous bridge location vol.23, pp.3, 2016, https://doi.org/10.12989/was.2016.23.3.191
- An efficient Cholesky decomposition and applications for the simulation of large-scale random wind velocity fields pp.2048-4011, 2018, https://doi.org/10.1177/1369433218810642
- Time-resolved aerodynamic loads on high-speed trains during running on a tunnel-bridge-tunnel infrastructure under crosswind vol.14, pp.1, 2020, https://doi.org/10.1080/19942060.2019.1705396
- Buffeting response of a free-standing bridge pylon in a trumpet-shaped mountain pass vol.30, pp.1, 2015, https://doi.org/10.12989/was.2020.30.1.085
- Experimental and Numerical Investigation of Wind Characteristics over Mountainous Valley Bridge Site Considering Improved Boundary Transition Sections vol.10, pp.3, 2020, https://doi.org/10.3390/app10030751
- Effects of Inhomogeneous Wind Fields on the Aerostatic Stability of a Long-Span Cable-Stayed Bridge Located in a Mountain-Gorge Terrain vol.33, pp.3, 2015, https://doi.org/10.1061/(asce)as.1943-5525.0001117
- Wind characteristics in the high-altitude difference at bridge site by wind tunnel tests vol.30, pp.6, 2015, https://doi.org/10.12989/was.2020.30.6.547
- Non-uniform wind environment in mountainous terrain and aerostatic stability of a bridge vol.30, pp.6, 2015, https://doi.org/10.12989/was.2020.30.6.649
- Exceedance Probability Assessment of Pedestrian Wind Environment Based on Multiscale Coupling Numerical Simulation vol.33, pp.4, 2015, https://doi.org/10.1061/(asce)as.1943-5525.0001126
- Wind characteristics and flutter performance of a long-span suspension bridge located in a deep-cutting gorge vol.233, pp.None, 2021, https://doi.org/10.1016/j.engstruct.2020.111841