DOI QR코드

DOI QR Code

FEM Carrier용 PP-LFT 소재의 응력비 변화에 따른 피로 거동

Fatigue Behavior of PP-LFT used in FEM Carreir with Variation of Stress Ratio

  • 투고 : 2014.07.28
  • 심사 : 2015.01.08
  • 발행 : 2015.01.31

초록

지금까지 자동차 소재의 경량화 및 연소가스의 저감은 부품의 플라스틱화를 통하여 많은 진전이 있었다. 장섬유 보강 폴리프로필렌 소재가 적용된 프론트 엔드 모듈 캐리어는 플라스틱 구조부품 중에서 가장 성공적인 사례이다. 하지만, 장기 신뢰성 측면에서 볼 때, 자동차용 플라스틱 소재에 대한 피로거동 및 진동내구에 대한 더 많은 연구가 필요한 실정이다. 본 연구에서는 프론트 엔드 모듈 캐리어의 피로설계 및 해석의 기초가 되는 폴리프로필렌 장섬유 소재에 대한 내구성을 분석하였다. 피로수명과 응력진폭 또는 평균응력 간의 상관관계를 평가하기 위하여 다양한 응력비에서 피로실험을 수행하였다. 일정 응력진폭에서 응력비를 변화시킨 결과는 최대하중을 고정시킨 결과보다 피로수명의 변화가 응력비 증가에 따라 2~6% 크게 나타났다. 또한 주사전자 현미경을 통하여 장섬유 보강 폴리프로필렌 소재에 대한 피로균열의 발생, 전파의 파괴기구를 확인하였다.

Plastics have brought a significant progress in reducing the weight of automotive parts and improving gas emissions by replacing steel parts. The front end module (FEM) carrier, which was made from long glass fiber reinforced polypropylene (PP-LFT), is one of the most successful examples. On the other hand, more research on the fatigue behavior and vibration durability of automotive plastic parts will be needed to improve the long-term reliability. This paper analyzed the durability of the PP-LFT, which is fundamental to fatigue design and analysis of FEM carrier. Various fatigue tests were conducted at different stress ratios to evaluate the relationship between the fatigue life and stress amplitude or mean stress level. In the case of a fixed stress amplitude, the change in fatigue life with the stress ratio was 2~6% larger than the case of fixed maximum stress. Furthermore, this study observed the mechanism of initiation and propagation of the fatigue cracks in PP-LFT by scanning electron microscopy.

키워드

참고문헌

  1. Padraig Naughton, Jan Rottger and Bill Bowser, "A New Approach to Hybrid Front-End Systems," SAE 2002-01-1229, 2002.
  2. Takahiro Tochioka, Chikashi Kawamoto, Masanori Ogawa and Kenichiro Sugimoto, "Development of Module Carriers by Injection Molding with Long Glass-Fiber Reinforced Polypropylene," SAE 2003-01-0791, 2003.
  3. Engelbert Meurer, "Plastic/Metal Hybrid Technology in Automotive Front Ends," SAE 1999-01-3243, 1999.
  4. V. Bellenger, A. Tcharkhtchi, and Ph. Castaing, "Thermal and Mechanical Fatigue of a PA66/Glass Fibers Composite Material," International Journal of Fatigue, Vol. 28, pp. 1348-1352, 2006. DOI: http://dx.doi.org/10.1016/j.ijfatigue.2006.02.031
  5. K. Noda, A. Takahara, T. Kajiyama, "Fatigue failure mechanisms of short glass-fiber reinforced nylon 66 based on nonlinear dynamic viscoelastic measure ment," Polymer, Vol. 42, pp. 5803-5811, 2001. DOI: http://dx.doi.org/10.1016/S0032-3861(00)00897-1
  6. P. K. Mallick, Yuanxin Zhou, "Effect of mean stress on the stress-controlled fatigue of a short E-glass fiber reinforced polyamide-6,6," International Journal of Fatigue, Vol. 26, pp. 941-946, 2004. DOI: http://dx.doi.org/10.1016/j.ijfatigue.2004.02.003
  7. Ho-Young You, Sihwan Park, "Warpage analysis of a Door Carrier Plate in the injection molding Considering the characteristics of LFT," Journal of the Korea Academia-Industrial cooperation Society, Vol. 14, pp. 3625-3630, 2013. DOI: http://dx.doi.org/10.5762/KAIS.2013.14.8.3625
  8. T. P. Skourlis, K. Pochiraju, C. Chassapis and S. Manoochehri, "Structure-modulus relationships for injection-molded long fiber-reinforced polyphthalam ides," Composites Part B, Vol. 29B, pp. 309-320, 1998. DOI: http://dx.doi.org/10.1016/S1359-8368(97)00011-5
  9. S. D. Bartus, U. K. Vaidya, "Performance of long fiber reinforced thermoplastics subjected to transverse intermediate velocity blunt object impact," Composite Structure, Vol. 67, pp. 263-277, 2005. DOI: http://dx.doi.org/10.1016/j.compstruct.2004.07.023
  10. Seung-Hyun Lim, Kang-Il Jeon, Young-Gon Son, Dong-Hak Kim, "Estimation of viscosity of by comparing the simulated pressure profile from CAE analysis with the Long Fiber Thermoplastic(LFT) measuring cavity pressure," Journal of the Korea Academia-Industrial cooperation Society, Vol. 12, pp. 1982-1987, 2011. DOI: http://dx.doi.org/10.5762/KAIS.2011.12.4.1982
  11. B. He, H. Liu, J. Leng, B. Yang, X. Chen, J. Fu, Q. Fu, "Mechanical properties of long glass fiber-reinforced polypropylene composites and their influence factors," Journal of Reinforced Plastics and Composites, Vol. 30, pp. 222-228, 2011. DOI: http://dx.doi.org/10.1177/0731684410391513
  12. B. Yang, J. Leng, B. He, H. Liu, Y. Zhang, Z. Duan, "Influence of fiber length and compatibilizer on mechanical properties of long glass fiber reinforced polyamide 6,6," Journal of Reinforced Plastics and Composites, Vol. 31, pp. 263-277, 2012. DOI: http://dx.doi.org/10.1177/0731684412454199