DOI QR코드

DOI QR Code

Effects of Current Spreading in GaN-based Light-emitting Diodes Using ITO Spreading Pad

  • Kim, Jang Hyun (Inter-University Semiconductor Research Center and Department of Electrical Engineering and Computer Science, Seoul National University) ;
  • Kim, Garam (Inter-University Semiconductor Research Center and Department of Electrical Engineering and Computer Science, Seoul National University) ;
  • Park, Euyhwan (Inter-University Semiconductor Research Center and Department of Electrical Engineering and Computer Science, Seoul National University) ;
  • Kang, Dong Hoon (Samsung Electronics Co. Ltd.) ;
  • Park, Byung-Gook (Inter-University Semiconductor Research Center and Department of Electrical Engineering and Computer Science, Seoul National University)
  • Received : 2014.07.17
  • Accepted : 2014.12.29
  • Published : 2015.02.28

Abstract

In conventional LEDs, a mesa-structure is usually used and it causes the current to be overcrowded in a specific region. We propose a novel structure of GaN-based LED to overcome this problem. In order to distribute the current in an active region, a spreading pad is inserted at the p-type region in the GaN based LED device. The inserted spreading pad helps the current flow because it is more conductive than the p-type GaN layer. By performing electrical and optical simulations, the effects of the spreading pad insertion are confirmed. The results of electrical simulation show that the current spreads more uniformly and more radiative recombination is produced as well. Moreover, from the optical simulation, it is revealed that the ITO is less absorptive material than p-GaN if the condition of specific wavelength sources is satisfied. Considering all of the results, we can conclude that the luminescent power is enhanced by the spreading pad.

Keywords

References

  1. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, "High-Power, Long-Lifetime InGaN Multi-Quantum-Well-Structure Laser Diodes," Jpn. J. Appl. Phys, vol. 36, L1059-L1061, 1997. https://doi.org/10.1143/JJAP.36.L1059
  2. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, "High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures," Jpn. J. Appl. Phys. vol. 34, pp. L797-L799, 1995. https://doi.org/10.1143/JJAP.34.L797
  3. N. F. Gardner, G. O. Muller, Y. C. Shen, G. Chen, S. Watanabe, W. Gotz, and M. R. Krames, "Blueemitting InGaN-GaN double-heterostructure lightemitting diodes reaching maximum quantum efficiency above 200A/$cm^2$," Appl. Phys. Lett. Vol. 91, pp. 243506, 2007. https://doi.org/10.1063/1.2807272
  4. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. George Craford, "Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting," IEEE J. Disp. Technol. vol. 3, pp. 160, 2007. https://doi.org/10.1109/JDT.2007.895339
  5. Y. H. Ra, R. Navamathavan, J. H. Park and C. R. Lee, "High-Quality Uniaxial InxGa1-xN/GaN Multiple Quantum Well (MQW) Nanowires (NWs) on Si(111) Grown by Metal-Organic Chemical Vapor Deposition (MOCVD) and Light-Emitting Diode (LED) Fabrication," ACS Appl. Mater. Interfaces vol. 5, pp. 2111-2117, 2013. https://doi.org/10.1021/am303056v
  6. H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, K. S. Chung, "High-Brightness Light Emitting Diodes Using Dislocation-Free Indium Gallium Nitride/Gallium Nitride Multiquantum-Well Nanorod Arrays," ACS Nano Lett. vol.6, pp.1059-1062, 2004.
  7. M. Ali, O. Svensk, L. Riuttanen, M. Kruse, S. Suihkonen, A. E. Romanov, P. T. Torma, M. Sopanen, H. Lipsanen, M. A. Odnoblyudov and V. E. Bougrov, "Enhancement of near-UV GaN LED light extraction efficiency by GaN/sapphire template patterning," Semicond. Sci. Technol. vol. 27, pp. 082002, 2012. https://doi.org/10.1088/0268-1242/27/8/082002
  8. Y. S. Park, H. G. Lee, C.-M. Yang, D.-S. Kim, J.-H. Bae, S. Cho, J.-H. Lee and I. M. Kang, "Contactgeometry engineering in a circular light-emitting diode (LED) for improved electrical and optical performances," Semicond. Sci. Technol., vol.28, pp.015006, 2013. https://doi.org/10.1088/0268-1242/28/1/015006
  9. Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, Jr., and T. P. Chow, "Monolithic integration of light-emitting diodes and power metal-oxidesemiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate," Appl. Phys. Lett. vol.102, pp.192107, 2013. https://doi.org/10.1063/1.4807125
  10. X. A. Cao and S. D. Arthur, "High-power and reliable operation of vertical light-emitting diodes on bulk GaN," Appl. Phys. Lett. vol.85, pp.3971, 2004. https://doi.org/10.1063/1.1810631
  11. J.-S. Ha, S. W. Lee, H.-J. Lee, H.-J. Lee, S. H. Lee, H. Goto, T. Kato, K. Fujii, M. W. Cho, and T. Yao, "The Fabrication of Vertical Light-Emitting Diodes Using Chemical Lift-Off Process," IEEE Photon. Technol. Lett. vol. 20, pp.175-177, 2008.
  12. I. Eliashevich, Y. Li, A. Osinsky, C. A. Tran, M. G. Brown, R. F. Karlicek, Jr., "Part of the SPIE Conference on Light-Emitting Diodes: Research, Manufacturing and Applications III," San Jose, California, Proc. SPIE 3621, 28, 1999.
  13. X.A. Cao, E.B. Stokes, P. Sandvik, N. Taskar, J. Kretchmer and D. Walker, "Optimization of current spreading metal layer for GaN/InGaN-based light emitting diodes," Solid-State Electronics vol.46, pp.1235-1239, 2002. https://doi.org/10.1016/S0038-1101(02)00023-0
  14. S.-H. Han, C.-Y. Cho, S.-J. Lee, T.-Y. Park, T.-H. Kim, S. H. Park, S.W. Kang, J. W. Kim, Y. C. Kim, and S.-J. Park, "Effect of Mg doping in the barrier of InGaN/GaN multiple quantum well on optical power of light-emitting diodes," Appl. Phys. Lett. vol.96, pp.051113, 2010. https://doi.org/10.1063/1.3302458
  15. M. Zhang, P. Bhattacharya, W. Guo, and A. Banerjee, "InGaN/GaN self-organized quantum dot green light emitting diodes with reduced efficiency droop," Appl. Phys. Lett. vol.96, pp.132103, 2010. https://doi.org/10.1063/1.3374882
  16. S. Brochen, J. Brault, S. Chenot, A. Dussaigne, M. Leroux, and B. Damilano, "Dependence of the Mgrelated acceptor ionization energy with the acceptor concentration in p-type GaN layers grown by molecular beam epitaxy," Appl. Phys. Lett. vol.103, pp.032102, 2013. https://doi.org/10.1063/1.4813598
  17. M. V. Bogdanov, K. A. Bulashevich, O. V. Khokhlev, I. Yu. Evstratov, M. S. Ramm, and S. Yu. Karpov, "Effect of ITO spreading layer on performance of blue light-emitting diodes," Phys. Status Solidi C, vol.7, pp.2127-2129, 2010. https://doi.org/10.1002/pssc.200983416
  18. S.-C. Hsu, D.-S. Wuu, C.-Y. Lee, J.-Y. Su, and R.-H. Horng, "High-Efficiency 1-mm 2 AlGaInP LEDs Sandwiched by ITO Omni-Directional Reflector and Current-Spreading Layer," IEEE Photon. Technol. Lett., vol.19, pp.492-494, 2007. https://doi.org/10.1109/LPT.2007.893820
  19. J. K. Sheu, G. C. Chi, and M. J. Jou, "Enhanced output power in an InGaN&ndash,GaN multiquantum well light-emitting diode with asymmetric wells," IEEE Photon. Technol. Lett., vol. 13, pp.1164-1166, 2001. https://doi.org/10.1109/68.959351
  20. D. V. Morgan, I. M. Al-Ofi and Y. H. Aliyu, "Indium tin oxide spreading layers for AlGaInP visible LEDs," Semicond. Sci. Technol., Vol.15, pp.67-72, 2000. https://doi.org/10.1088/0268-1242/15/1/312
  21. T. H. Seo, K. J. Lee, T. S. Oh, Y. S. Lee, H. Jeong, A. H. Park, H. Kim, Y. R. Choi, E.-K. Suh, T. V. Cuong, V. H. Pham, J. S. Chung, and E. J. Kim, "Graphene network on indium tin oxide nanodot nodes for transparent and current spreading electrode in InGaN/GaN light emitting diode," Appl. Phys. Lett., vol.98, pp.251114, 2011. https://doi.org/10.1063/1.3601462
  22. A. Porch, D. V. Morgan, R. M. Perks, M. O. Jones, and P. P. Edwards, "Electromagnetic absorption in transparent conducting films," Appl. Phys. Lett., vol.95, pp.4734, 2004.
  23. H. Kim, J.-M. Lee, C. H., S.-W. Kim, D.-J. Kim, S.-J. Park and H. Hwang, "Modeling of a GaN-based lightemitting diode for uniform current spreading," Appl. Phys. Lett., vol.77, pp.1903, 2000. https://doi.org/10.1063/1.1311819
  24. Hyunsoo Kim, Seong-Ju Park, and Hyunsang Hwang, "Effects of current spreading on the performance of GaN-based light-emitting diodes," IEEE Trans. Electron Device, vol.48, pp.1065-1069, 2001. https://doi.org/10.1109/16.925227
  25. R. Dingle, D. D. Sell, S. E. Stokowski, and M. Ilegems, "Absorption, Reflectance, and Luminescence of GaN Epitaxial Layers," Phys. Rev. B, vol.4, pp.1211-1218, 1971. https://doi.org/10.1103/PhysRevB.4.1211
  26. Ray-Hua Horng, Dong-Sing Wuu, Yi-Chung Lien, and Wen-How Lan, "Low-resistance and hightransparency Ni/indium tin oxide ohmic contacts to ptype GaN," Appl. Phys. Lett., vol.79, pp.2925, 2001. https://doi.org/10.1063/1.1415048
  27. Mandy M. Y. Leung, Aleksandra B. Djurii, and E. Herbert Li, "Refractive index of InGaN/GaN quantum well," J. Appl. Phys., vol.84, pp.6312, 1998. https://doi.org/10.1063/1.368954
  28. K.-S. Lee and M. A. El-Sayed, "Dependence of the Enhanced Optical Scattering Efficiency Relative to That of Absorption for Gold Metal Nanorods on Aspect Ratio, Size, End-Cap Shape, and Medium Refractive Index," J. Phys. Chem. B, vol.109, pp.20331-20338, 2005. https://doi.org/10.1021/jp054385p
  29. E. Ejder, "Refractive index of GaN," phys. stat. sol. (a), vol.6, pp.445-448, 1971. https://doi.org/10.1002/pssa.2210060212
  30. Y. Yang, X.W. Sun, B.J. Chen, C.X. Xu, T.P. Chen, C.Q. Sun, B.K. Tay, Z. Sun, "Refractive indices of textured indium tin oxide and zinc oxide thin films," Thin Solid Films, 510, pp.95-101, 2006. https://doi.org/10.1016/j.tsf.2005.12.265
  31. R.A. Synowicki, "Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants," Thin Solid Films, vol.313, pp.394-397, 1998.
  32. M. E. A. saleh, M. C. Teich, Fundermental of photonics, (Wiley, New York, 2007) 2nd ed., p. 43.