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Abstract—Phase-change memory (PCM) is a 
promising technology that is anticipated to be used in 
the memory hierarchy of future computer systems. 
However, its access time is relatively slower than 
DRAM and it has limited endurance cycle. Due to this 
reason, PCM is being considered as a high-speed 
storage medium (like swap device) or long-latency 
memory. In this paper, we adopt PCM as a virtual 
memory swap device and present a new page 
replacement policy that considers the characteristics 
of PCM. Specifically, we aim to reduce the write 
traffic to PCM by considering the dirtiness of pages 
when making a replacement decision. The proposed 
replacement policy tracks the dirtiness of a page at 
the granularity of a sub-page and replaces the least 
dirty page among pages not recently used. 
Experimental results with various workloads show 
that the proposed policy reduces the amount of data 
written to PCM by 22.9% on average and up to 
73.7% compared to CLOCK. It also extends the 
lifespan of PCM by 49.0% and reduces the energy 
consumption of PCM by 3.0% on average.   
 
Index Terms—Phase-change memory, swap device, 
replacement policy, virtual memory, CLOCK   

I. INTRODUCTION 

Recently, phase-change memory (PCM) has been 
drawing considerable interest as a memory medium of 

future computer systems [1-4]. In particular, PCM is 
considered as a replacement of DRAM due to its various 
advantages such as low-power consumption, high density, 
byte-addressability, and non-volatility [1-3]. However, 
PCM has weaknesses to become a main memory medium 
as its access time is relatively slower (about 1-5x read, 5-
25x write) compared to DRAM and it has limited write 
endurance. Hence recently, it is being considered as a 
high-speed storage medium (like swap device) or long-
latency memory that is to be used with a DRAM buffer 
[1, 3, 4, 11, 12]. This paper presents a new page 
replacement policy for the system that uses PCM as a 
swap device.  

The primary goal of page replacement policies is to 
reduce the number of page faults because accessing 
traditional swap devices (i.e., hard disks) costs several 
orders of magnitudes larger than accessing DRAM 
memory. Meanwhile, PCM is known to possess 
significantly different physical characteristics from hard 
disks. As a result, PCM specific file systems [11, 12] and 
PCM specific memory management techniques [1, 3, 4] 
have been extensively studied. Unlike these studies, 
research on virtual memory systems that use PCM as a 
swap device is in its infancy.  

As Table 1 shows, the write latency of PCM is 5-25 
times slower than that of DRAM and the number of write 
operations allowed for each PCM cell is also limited to 
106-108 [1, 3]. To cope with this situation, studies on 
PCM memory use additional DRAM as shown in Figs. 
1(a) and (b). Though details of the architectures are 
different, the role of additional DRAM is commonly to 
hide the slow write operations of PCM and also increase 
the lifespan of PCM by absorbing frequent write 
operations. Studies on PCM specific file systems also 
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aim to reduce write traffic to PCM [11, 12].  
This paper reduces the write traffic to PCM-based 

swap devices by judiciously managing virtual memory 
page replacement policies. Specifically, we design a 
novel page replacement policy for virtual memory 
systems by making use of the fine-grained dirtiness 
management of a page. Our replacement policy keeps 
track of the dirtiness of a page (e.g., 4KB) at the 
granularity of a sub-page (e.g., 256B) and replaces the 
least dirty page among pages not recently used. This 
technique, which we call LDF-CLOCK (Least-Dirty-
First CLOCK), is effective in reducing the write traffic to 
PCM significantly by replacing pages incurring small 
writing.  

Moreover, in contrast to the LRU (Least Recently 
Used) replacement policy that needs to perform list 
manipulations or time-stamping on every memory 
reference, LDF-CLOCK does not require neither time-
stamping nor list manipulations unless page faults occur. 
This makes LDF-CLOCK suitable for virtual memory 
environments that allow OS controls only upon page 
faults. The other strength of LDF-CLOCK is that it does 
not degrade the page fault ratio significantly even though 
it reduces large write traffic to PCM. This is because 
LDF-CLOCK does not evict recently referenced pages 
similar to the original CLOCK algorithm.  

Experimental results show that LDF-CLOCK reduces 
the write traffic to PCM by 22.9% on average and up to 
73.7% compared to the CLOCK algorithm. We also 
show that the lifespan of PCM is extended by 49.0% and 
the energy consumption of PCM is reduced by 3.0% on 
average by using LDF-CLOCK.  

II. REPLACEMENT POLICIES FOR VIRTUAL 

MEMORY SYSTEMS 

Page references in a virtual memory environment have 
temporal locality in that a more recently referenced page 
is more likely to be referenced again soon. In terms of 
the hit ratio, the LRU policy is known to be optimal for 
references which exhibit this property [13]. LRU aligns 
all pages in the memory in the order of their most recent 
reference time, and replaces the least recently used page 
whenever free page frames are needed. It is the most 
popular replacement algorithm in various caching 
environments including file system buffer cache since it 
performs well but has constant time and space overheads.  

Nevertheless, LRU has a critical weakness in virtual 
memory environments. On every memory reference, 
LRU needs to move a page to the most recently used 
position in the list. This involves some list manipulations 
which cannot be handled by the paging unit hardware. 
Thus, list implementation of LRU is generally used in 
file system buffer cache, in which list manipulation by 
OS is possible on every memory references. Though 
LRU can also be implemented by hardware, this is not 
feasible in virtual memory systems as it should maintain 
the time-stamp of each page and update it upon every 
memory references. Thus, hardware implementation of 
LRU is usually adopted in cache memory systems, which 
have limited associativity.  

Due to this reason, in virtual memory systems, 
CLOCK was introduced as an efficient way to 
approximate the workings of LRU [14]. Instead of 
keeping pages in the order of reference time, CLOCK 
only monitors whether a page has recently been 
referenced or not with one reference bit per page. 
Whenever a page is referenced (i.e., read or written), the 
reference bit is set to 1 by the paging unit hardware. 
CLOCK resets this bit to 0 periodically to ensure that a 
page will have reference bit set only if it has been 
accessed at least once from the duration of the last reset. 

Table 1. Comparison of memory technologies 
 DRAM PCM 

Cell size 6F2 5F2 
MLC N/A 4 

Read Latency 20 ns 20-100 ns 
Write Latency 20 ns 100-500 ns  

Endurance 1016 106-108 
Retention Volatile (64 ms) Non-volatile (10yr) 

 
 

L2 cache

L1 I-cache

PCM memory

DRAM buffer

Last level cache

CPU
L1 D-cache

 

PCM 
memory

DRAM 
memory

Linear address space

L2 cache

L1 I-cache

Last level cache

CPU
L1 D-cache

 

L2 cache

L1 I-cache

DRAM memory

Last level cache

CPU
L1 D-cache

PCM swap device

 

        (a)               (b)                (c)  

Fig. 1. Different memory architecture with PCM. 
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To do this, CLOCK maintains pages in a circular list. 
Whenever free page frames are needed, CLOCK 
sequentially scans through the pages in the circular list, 
starting from the current position, that is, next to the 
position of the last evicted page. This scan continues 
until a page with a reference bit of 0 is found and that 
page is then replaced. For every page with reference bit 
of 1 in the course of the scan, CLOCK clears the 
reference bit to 0, without removing the page from the 
list.  

The reference bit of each page indicates whether that 
page has recently been accessed or not; and a page which 
is not referenced until the clock-hand comes round to that 
page again is certain to be replaced. Even though 
CLOCK does not replace the LRU page, it replaces a 
page that has not been referenced recently, so that 
temporal locality is exploited to some extent. In addition 
to this, since it does not require any list manipulation on 
memory hit, CLOCK is suitable for virtual memory 
environments.  

III. THE LDF-CLOCK POLICY 

1. System Architecture 
 
Fig. 1(c) shows the target system architecture of LDF-

CLOCK. LDF-CLOCK is adopted as a page replacement 
algorithm in the main memory layer on top of the PCM 
swap device. The main memory transfers data to/from 
LLC (Last Level Cache) in a sub-page (or a cache block) 
granularity, while communicates with the PCM swap 
device in a page granularity. In our study, the size of a 
page is set to 4KB and the size of a sub-page to 512B by 
which a page consists of 8 sub-pages.  

For each page, LDF-CLOCK maintains a reference bit 
and a valid bit to indicate whether the page is recently 
accessed and contains valid data, respectively. A page 
also needs a dirty bit to represent whether it has been 
modified after entering memory so that changes can be 
reflected to the swap device when it is evicted. LDF-
CLOCK maintains a dirty bit for each sub-page to 
quantify the expected write traffic by eviction of each 
page. The dirty bit is set when the LLC cache block is 
written back to the memory page. The dirty bit of 1 
indicates that the sub-page should be flushed to PCM 
swap device when the page it belongs to is replaced from 

memory since it has been changed while resident in the 
memory.  

To implement the LDF-CLOCK algorithm, sub-page 
dirty information should be maintained in each page 
table entry. As TLB is a cache of the page table, it also 
needs sub-page dirty information. This necessitates the 
modification of TLB entries as well as page table entries. 
This may be a hurdle to adopt LDF-CLOCK in current 
systems promptly, but as the underlying hardware device 
is changed from traditional swap storage (i.e. HDD) to 
new medium (PCM), such modifications are essential to 
utilize the full advantages of PCM. 

 

2. Algorithm Details 
 
LDF-CLOCK selects a replacement victim based on 

the state of the reference bit and dirty bits of each page to 
reduce the number of page faults and the write traffic to 
PCM simultaneously. LDF-CLOCK sets the reference bit 
of a page to 1 when the page is accessed, and it also sets 
the dirty bit of the accessed sub-page when the access is 
write.  

Similar to CLOCK, LDF-CLOCK also uses a clock-
hand that traverses in one direction over the circular list 
of pages. Whenever replacement is needed to 
accommodate a new page, LDF-CLOCK considers two 
important metrics: recency and dirtiness. Recency is 
important for virtual memory workloads, which exhibit 
strong temporal locality. The reference bit of each page 
is an indication of recency. In order to reduce the number 
of page faults, LDF-CLOCK restricts victim candidates 
for replacement to those pages with the reference bit of 
0. To reduce the write traffic to PCM as well, LDF-
CLOCK also considers the dirtiness of a page, which is 
defined as the number of dirty sub-pages within a page.  

During the victim selection process, LDF-CLOCK 
checks the reference bit of the page pointed by the clock-
hand. If the reference bit is 1, it is reset to 0, and the 
clock-hand is advanced to the next page. This step is 
repeated until the clock-hand comes across a page with 
the reference bit of 0, and then, stops at that point. Now, 
the set of all pages, which currently have their reference 
bit of 0 is considered to be victim candidates. Of these, 
LDF-CLOCK selects the page with the minimum number 
of dirty sub-pages as a victim. This policy allows pages 
referenced recently to remain in memory, while reducing 
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write traffic to PCM by evicting a page that does not 
incur much PCM writing. If there exist multiple pages 
that have the same number of minimum dirty sub-pages, 
the page whose reference bit was least recently reset to 0 
is evicted.  

As all pages with the reference bit of 0 are victim 
candidates, a naive implementation of LDF-CLOCK 
requires the time overhead of O(n), where n is the 
number of page frames in memory. To eliminate such 
inefficiency, we use multiple list structures that separate 
pages with different number of dirty sub-pages. In 
particular, we use 9 lists, and each list manages pages 
with the dirty sub-pages of 0 to 8 in the FIFO order. Thus, 
when the clock-hand comes across a page with the 
reference bit of 0, LDF-CLOCK replaces the first page in 
the list with minimum dirty sub-pages. Note that these 
operations can be performed in a constant time 
complexity. 

Fig. 2 shows the workings of LDF-CLOCK. This 
example assumes that a page consists of four sub-pages. 
When replacement is needed, LDF-CLOCK checks the 
reference bit of the page pointed by the clock-hand (Fig. 
2(a)). As the reference bit is 1, it is reset to 0, and the 
clock-hand is advanced to the next page (Fig. 2(b)). 
Again, as the reference bit of Page 2 is 1, it is cleared and 
the clock-hand is advanced to Page 3 (Fig. 2(c)). Now, 
the clock-hand stops at this location as the reference bit 
of Page 3 is 0. In this situation, Pages 1, 2, 3, 5, and 8 are 
considered as candidates for eviction as their reference 
bit is 0. Of these, Page 8 is finally selected as a victim as 
it has the smallest number of dirty sub-pages. As a result, 
LDF-CLOCK reduces write traffic to PCM to one fourth 

compared to original CLOCK that possibly evicts Page 3 
with no awareness of dirtiness. 

IV. PERFORMANCE EVALUATION 

1. Experimental Setup 
 
We now present the performance evaluation results to 

assess the effectiveness of LDF-CLOCK. A trace-driven 
simulation is performed to manage the replacement 
algorithm of a virtual memory system. The size of a page 
is set to 4KB which is common to most operating 
systems. The size of a sub-page is set to 512B 
considering the block size of the last-level cache. The 
characteristics of PCM used in our experiments are 
summarized in Table 2 [3, 4, 20].  

The traces were acquired by a modified version of the 
Cachegrind tool from the Valgrind 3.2.3 toolset [15]. We 
capture virtual memory access traces from four different 
applications used on Linux Xwindows, namely, the 
freecell game, the kghostview PDF file viewer, the 
firefox web browser, and the gnuplot graphing utility. 
We filter out memory references that are accessed 
directly from the CPU cache memory and also reflect the 
write-back property of the cache memory. The 
characteristics of these traces are described in Table 3.   

Table 2. PCM characteristics used in the experiments  
Read/Write Latency 50 / 500 (ns/cache block) 
Read/Write Energy 0.2 / 1.0 (nJ/bit) 

Static Power 0.1 (W/GB) 
Endurance 107 
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Fig. 2. Working of the LDF-CLOCK policy. 
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The performance of LDF-CLOCK is compared with 
CLOCK and MIN-DIRTY. MIN-DIRTY is an algorithm 
that replaces the page containing minimum number of 
dirty sub-pages, which is devised for the comparison 
purpose.  

 
2. Experimental Results 

 
Fig. 3 shows the amount of data written to PCM for 

LDF-CLOCK and MIN-DIRTY normalized to CLOCK 
as the memory size is varied. As shown in the figure, 
LDF-CLOCK significantly reduces the write traffic to 
PCM compared to original CLOCK for a wide range of 
memory sizes and a variety of workloads. Specifically, 
LDF-CLOCK reduces the write traffic to PCM by an 
average of 22.9% and up to 73.7% compared to CLOCK. 
The write traffic of MIN-DIRTY is expected to be less 
than that of LDF-CLOCK as it preserves pages with 
more dirty data in memory as much as possible. However, 

it performs worse than LDF-CLOCK in most cases. 
Specifically, MIN-DIRTY incurs much more PCM 
writes than LDF-CLOCK when the DRAM size is small. 
This implies that dirty pages maintained by MIN-DIRTY 
are cold pages that do not incur writes again while some 
evicted pages by MIN-DIRTY must be hot pages which 
are written again although they are less dirty. This will be 
quantified more clearly through the total elapsed time 
and the energy consumption results in the next 
paragraphs.  

Fig. 4 shows the total elapsed time of LDF-CLOCK 
and MIN-DIRTY normalized to CLOCK. As shown in 
the figure, the performance degradation of LDF-CLOCK 
is very small compared to CLOCK though it reduces 
write traffic to PCM significantly. This is because LDF-
CLOCK selects a victim page with the same conditions 
with respect to the re-reference likelihood compared to 
original CLOCK. That is, both LDF-CLOCK and 
CLOCK replace a page only after its reference bit 
becomes 0. In contrast, the performance of MIN-DIRTY 
is degraded significantly because it does not consider the 
reference recency of pages.  

Let us now move on to the power issue. Power 
consumption in PCM can be divided into static and 
active power consumption. Static power consumption is 
necessary even when PCM is idle. Due to its non-volatile 
characteristics, PCM does not need refresh operations, 

Table 3. Memory usage and reference count for each workload. 
memory access count 

workload footprint 
(KB) I-read D-read D-write 

freecell 2,521 114,233 315,902 60,040 
firefox 8,887 1,886,877 2,848,847 483,677 
gnuplot 3,182 3,193 112,600 110,286 
kgview 4,347 380,609 1,061,986 103,540 

 
 

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

256 512 1024 2048 4096 8192

N
or

m
al

ize
d 

w
rit

e 
tr

af
fic

DRAM Size (KB)

LDF-CLOCK MIN-DIRTY

 

0.0

0.5

1.0

1.5

2.0

256 512 1024 2048 4096 8192

N
or

m
al

ize
d 

w
rit

e 
tr

af
fic

DRAM Size (KB)

LDF-CLOCK MIN-DIRTY

 

           (a) freecell                (b) firefox                  
 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

256 512 1024 2048 4096 8192

N
or

m
al

ize
d 

w
rit

e 
tr

af
fic

DRAM Size (KB)

LDF-CLOCK MIN-DIRTY

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

256 512 1024 2048 4096 8192

N
or

m
al

ize
d 

w
rit

e 
tr

af
fic

DRAM Size (KB)

LDF-CLOCK MIN-DIRTY
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Fig. 3. Write traffic to PCM for LDF-CLOCK and MIN-
DIRTY normalized to CLOCK as the size of main memory is 
varied. 
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Fig. 4. Total elapsed time of LDF-CLOCK and MIN-DIRTY 
normalized to CLOCK as the size of main memory is varied. 
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and thus its static power consumption is very small 
compared to that of DRAM. Active power consumption 
refers to the energy dissipated when data is being read 
and written. In our experiments, total power consumption 
Ptotal is calculated as 

 
 Ptotal = Pstatic + Pactive  

 
where  
 

Pstatic = Unit_static_power (W/GB) * memory_size (GB) 
Pactive = (Nread * Eread(J) + Nwrite* Ewrite(J)) /  
       (Nread * Lread(ns) + Nwrite * Lwrite(ns)). 
 
Unit_static_power is the static power per capacity, and 

Nread and Nwrite are the number of reads and writes, 
respectively. Eread and Ewrite refer to the energy required 
for read and write operations, respectively. Lread and Lwrite 
are the average latency of a read and a write operation, 
respectively.  

Fig. 5 shows the energy consumption of PCM when 
using LDF-CLOCK and MIN-DIRTY normalized to 
CLOCK. The detailed parameters used in this experiment 
are listed in Table 3. As shown in the figure, the energy-
savings of LDF-CLOCK is 3.0% on average and up to 
6.9%, compared to CLOCK. The energy-savings here are 
small as most workloads are read-intensive.  

Finally, we show the effectiveness of LDF-CLOCK 
with respect to the expected lifetime of PCM. We 
calculate the expected lifetime of PCM assuming that all 
writes are equally distributed to PCM. Equal distribution 
may seem like an unrealistic assumption. However, as 
we do not deal with the management of PCM, this is a 
fair approach when we consider only page replacement 
policies. Furthermore, recent technologies indicate that 
the wear-leveling of PCM aiming to evenly distribute 
PCM writes, can be supported within a PCM controller 
[1, 3]. Hence, we consider this to be a valid assumption. 
Fig. 6 shows the lifetime of PCM for LDF-CLOCK and 
MIN-DIRTY normalized to CLOCK. As can be seen, 
LDF-CLOCK extends the lifetime of PCM by a large 
margin compared to CLOCK. Specifically, the lifetime is 
extended by 49.0% on average and up to 279.9%, 
compared to CLOCK. 

V. RELATED WORKS 

PCM hardware technology has already reached a 
certain level of maturity. Specifically, as of 2013, PCM 
has been commercialized and has been equipped in 
certain types of smartphones. Patents published recently 
by Intel describe a detailed micro-architecture to support 
PCM as memory and/or a storage device, implying that 
PCM based computer architectures are imminent [16, 17]. 
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Fig. 5. Energy consumption of LDF-CLOCK and MIN-DIRTY 
normalized to CLOCK as the size of main memory is varied. 
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Fig. 6. PCM lifetime for LDF-CLOCK and MIN-DIRTY 
normalized to CLOCK as the size of main memory is varied. 
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Two major PCM manufacturers, Micron and Samsung, 
are forecasting that the primary interfaces for PCM is 
likely to be DIMM and PCI-e rather than other block I/O 
interfaces [18]. This is because existing block I/O 
interfaces such as SATA or SAS are not fast enough to 
support high-performance PCM devices, limiting the full 
advantages that PCM conveys. In addition, numerous 
activities are underway to re-architect interfaces and the 
underlying software to maximally utilize the 
developments that are happening with PCM technologies 
[19]. 

Studies on using PCM as main memory have focused 
on enhancing write performance and endurance of PCM. 
There are three categories of research that aims to 
achieve these goals.  

The first category uses a certain amount of DRAM to 
reduce the number of writes that occurs on PCM [1, 4]. 
Dhiman et al. present a hybrid PCM and DRAM memory 
architecture called PDRAM [4]. They focus on balancing 
the write count of PCM by moving data located at a PCM 
page to a DRAM page if the write count of the PCM 
page becomes large. However, they do not consider the 
placement or replacement issues. Qureshi et al. present 
an architecture that uses DRAM as the last level cache 
memory of PCM main memory [1]. This architecture 
caches both clean and dirty pages in DRAM cache. Zhou 
et al. present cache partitioning and replacement 
algorithms under this architecture [9]. Their algorithms 
aim at reducing the cache miss ratio as well as 
writebacks from the DRAM cache. They also consider 
the balance of PCM write queues in the design of 
replacement algorithms. Seok et al. predicts page access 
patterns and tries to migrate read-intensive pages to PCM 
and write-intensive pages to DRAM [10]. For prediction 
of the read and write access pattern, they calculate the 
weighting value using the ratio of writes to total 
references. Their research is similar to our research in 
maintaining data to be written again on non-PCM 
partitions. However, their algorithm requires exact time 
information for every reference, which is a requirement 
difficult to fulfill in virtual memory systems.  

The second category is to reduce the number of PCM 
writes by programming only the cells whose contents 
have been changed. This technique could enhance the 
endurance of PCM but it accompanies comparison 
overhead. Qureshi et al. present the line-level write-back 

(LLWB) technique that writes only dirty cache lines 
within a PCM page [1]. To do this, they use a dirty bit 
within each cache line that retains whether the cache line 
is modified or not. Yang et al. present the data 
comparison write that compares each bit in a PCM page 
and then writes only modified bits [6]. Similar work is 
also performed by Zhou et al. [5]. Cho and Lee present 
the flip-n-write technique, which flips all bits in a page if 
it incurs less number of bit writes [7]. Wongchaowart et 
al. present a content-aware block placement algorithm 
that selects a free block among those with similar 
contents in the free block lists [8]. 

The third category is the wear-leveling technique to 
evenly distribute PCM writes. Coarse-grained and fine-
grained wear-leveling techniques have been separately 
studied. For coarse-grained wear-leveling, Zhou et al. 
present the segment swapping technique that swaps old 
and young pages periodically [5]. For fine-grained wear-
leveling, Zhou et al. present the row shifting technique, 
which shifts the position of bits in a page in order to 
balance the number of bit writes within a page [5]. 
Qureshi et al. present a similar technique called FGWL 
(fine grained wear-leveling) that stores the lines of each 
page in PCM in a rotated manner [1].   

VI. CONCLUSION 

This paper presented a new page replacement policy, 
called LDF-CLOCK, for PCM swap devices. LDF-
CLOCK reduces write traffic to PCM by replacing the 
least dirty page among pages not recently referenced. We 
have shown that LDF-CLOCK reduces the write traffic 
to PCM by 22.9% on average and up to 73.7% compared 
to CLOCK. We also show that the lifespan of PCM is 
extended by 49.0% and the energy consumption of PCM 
is reduced by 3.0% on average compared to CLOCK. 

ACKNOWLEDGMENT 

This work was supported by the National Research 
Foundation (NRF) grant funded by the Korea 
government (MEST) (No. 2011-0028825).  

REFERENCES 

[1] M. Qureshi, V. Srinivasan, and J. Rivers, “Scalable 



JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.1, FEBRUARY, 2015 75 

 

high performance main memory system using 
phase-change memory technology,” Proc. IEEE 
ISCA Conf., pp. 24-33, 2009.  

[2] E. Lee, H. Bahn, and S.H. Noh, “Unioning of the 
buffer cache and journaling layers with non-volatile 
memory,” Proc. USENIX FAST Conf., pp. 73-80, 
2013.  

[3] S. Lee, H. Bahn, and S. H. Noh, “CLOCK-DWF: a 
write-history-aware page replacement algorithm for 
hybrid PCM and DRAM memory architectures,” 
IEEE Trans. Comput., vol. 63, no. 9, pp. 2187-2200, 
2014.  

[4] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: a 
hybrid PRAM and DRAM main memory system,” 
Proc. ACM/IEEE Design Automation Conf., 
pp.664-559, 2009.  

[5] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A 
durable and energy efficient main memory using 
phase change memory technology,” Proc. IEEE 
ISCA Conf., pp.14-23, 2009. 

[6] B. Yang, J. Lee, J. Kim, J. Cho, S. Lee, and B. Yu, 
“A low power phase-change random access 
memory using a data-comparison write scheme,” 
Proc. IEEE Symp. Circuit and Syst., 2007.  

[7] S. Cho and H. Lee, “Flip-N-Write: a simple 
deterministic technique to improve PRAM write 
performance, energy and endurance,” Proc. IEEE 
Symp. Microarchitect., 2009.  

[8] B.Wongchaowart, M. Iskander, and S. Cho, “A 
content-aware block placement algorithm for 
reducing PRAM storage bit writes,” Proc. IEEE 
MSST Conf., pp.1-11, 2010. 

[9] M. Zhou, Y. Du, B. Childers, R. Melhem, and D. 
Mosse, “Writeback-aware partitioning and 
replacement for last-level caches in phase change 
main memory systems,” ACM Trans. Architect. 
Code Optimization, vol. 8, no. 4, 2012. 

[10] H. Seok, Y. Park, K. Park, and K. Park, “Efficient 
page caching algorithm with prediction and 
migration for a hybrid main memory,” Applied 
Comput. Review, vol. 11, no. 4, 2011. 

[11] E. Lee, J. Jang, T. Kim, and H. Bahn, “On-demand 
snapshot: an efficient versioning file system for 
phase-change memory,” IEEE Trans. Knowledge & 
Data Engineering, vol. 25, no. 12, pp.2841-2853, 
2013. 

[12] E. Lee, S. Yoo, J. Jang, and H. Bahn, Shortcut-JFS: 

a write efficient journaling file system for phase 
change memory, Proc. IEEE MSST Conf., 2012. 

[13] E. Coffman and P. Denning, Operating Systems 
Theory, Prentice-Hall, pp.241-283, 1973.   

[14] R. Carr and J. Hennessy, “WSCLOCK—a simple 
and effective algorithm for virtual memory 
management,” Proc. ACM SOSP Conf., pp.87-95, 
1981. 

[15] Valgrind, http://valgrind.org/  
[16] B. Nale, R. Ramanujan, M. Swaminathan, and T. 

Thomas, “Memory channel that supports near 
memory and far memory access,” PCT/US2011/ 
054421, Intel Corporation, 2013.  

[17] R. Ramanujan, R. Agarwal, and G. Hinton, 
“Apparatus and method for implementing a multi-
level memory hierarchy having different operating 
modes,” US 20130268728 A1, Intel Corporation, 
2013. 

[18] PCM product, http://www.micron.com/products/ 
phase-change-memory, Micron, 2013.  

[19] R. L. Coulson, “Co-optimizing systems, OS, appli- 
cations, SSDs and NVM,” Proc. Non-Volatile 
Memories Workshop, 2012. 

[20] E. Lee, H. Bahn, S. Yoo, S. H. Noh, “Empirical 
study of NVM storage: an operating system’s 
perspective and implications,” Proc. IEEE 
MASCOTS Conf., 2014.   

 
 
 

Seunghoon Yoo received the BS 
degree in computer science from 
Korea Air Force Academy in 2006, 
and the MS degree in computer 
engineering from Seoul National 
University in 2011, and is currently 
working toward the PhD degree in 

computer engineering at Seoul National University. He is 
also with the Korea Air Force Academy. His research 
interests include flash memory, storage system, and 
virtualization software.  
 



76 SEUNGHOON YOO et al : LDF-CLOCK: THE LEAST-DIRTY-FIRST CLOCK REPLACEMENT POLICY FOR PCM-BASED SWAP … 

 

Eunji Lee received the PhD degree 
in computer engineering from Seoul 
National University in 2012. She was 
a visiting scholar at the Department 
of EECS, the University of Michigan, 
Ann Arbor, and a senior engineer at 
the Samsung Electronics, Co., Ltd. 

She is currently an assistant professor in the software 
department, Chungbuk National University, Korea. Her 
research interests include operating systems, embedded 
systems, and storage systems. She has published more 
than 40 papers in leading conferences and journals in 
these fields, including IEEE Trans. Computers, IEEE 
Trans. Knowledge & Data Engineering, and ACM Trans. 
Storage. She also received the Best Paper Awards at 
USENIX FAST in 2013. 

Hyokyung Bahn received the BS, 
MS, and PhD degrees in computer 
science from Seoul National University, 
in 1997, 1999, and 2002, respectively. 
He is currently a full professor of 
computer engineering at Ewha 
University, Korea. His research 

interests include operating systems, storage systems, 
embedded systems, and real-time systems. He received 
the Best Paper Awards at the USENIX Conference on 
File and Storage Technologies in 2013. 

 
 
 


