DOI QR코드

DOI QR Code

Association of miR-1266 with Recurrence/Metastasis Potential in Estrogen Receptor Positive Breast Cancer Patients

  • Sevinc, Elif Demirdogen (Department of Medical Biology, Faculty of Medicine, University of Uludag) ;
  • Egeli, Unal (Department of Medical Biology, Faculty of Medicine, University of Uludag) ;
  • Cecener, Gulsah (Department of Medical Biology, Faculty of Medicine, University of Uludag) ;
  • Tezcan, Gulcin (Department of Medical Biology, Faculty of Medicine, University of Uludag) ;
  • Tunca, Berrin (Department of Medical Biology, Faculty of Medicine, University of Uludag) ;
  • Gokgoz, Sehsuvar (Department of General Surgery, Faculty of Medicine, University of Uludag) ;
  • Tasdelen, Ismet (Department of General Surgery, Faculty of Medicine, University of Uludag) ;
  • Tolunay, Sahsine (Department of Pathology, Faculty of Medicine, University of Uludag) ;
  • Evrensel, Turkkan (Department of Medical Oncology, Faculty of Medicine, University of Uludag)
  • Published : 2015.02.04

Abstract

The Homeobox B13 (HOXB13):Interleukin 17 Receptor B (IL17BR) index of estrogen receptor (ER)-positive breast cancer (ER (+) BC) patients may be a potential biomarker of recurrence/ metastasis. However, effects of microRNA (miRNA) binding to the 3' untranslated region (3' UTR) of HOXB13 and IL17BR and its function on recurrence/metastasis in ER (+) BC remains elusive. The aims of this study were to determine the expression of miRNAs that bind to 3' UTR of HOXB13 and IL17BR in ER (+) BC patients and asess the effects of these miRNAs on recurrence/metastasis. The expression profiles of HOXB13 and IL17BR were evaluated using RT-PCR in tumors and normal tissue samples from 40 ER (+) BC patients. The expression level of 4 miRNAs, which were predicted to bind the 3' UTR of HOXB13 and IL17BR using TargetScan, microRNA.org and miRDB online databases, were further evaluated with RT-PCR. Our findings demonstrated that high miR-1266 levels might be significant prognostic factor for recurrence/metastasis occurrence (3.05 fold p=0.004) and tamoxifen response (3.90 fold; p=0.2514) in ER (+) BC cases. Although we suggest that modulation of miR-1266 expression may be an important mechanism underlying the chemoresistance of ER (+) BC, advanced studies and validation are required.

Keywords

References

  1. Avci CB, Harman E, Dodurga Y, Susluer SY, Gunduz C (2013). Therapeutic potential of an anti-diabetic drug, metformin: alteration of miRNA expression in prostate cancer cells. Asian Pac J Cancer Prev, 14, 765-8. https://doi.org/10.7314/APJCP.2013.14.2.765
  2. Benson JR, Jatoi I, Keisch M, et al (2009). Early breast cancer. Lancet, 373, 1463-79. https://doi.org/10.1016/S0140-6736(09)60316-0
  3. Chen L, Lu MH, Zhang D, et al (2014). miR-1207-5p and miR-1266 suppress gastric cancer growth and invasion by targeting telomerase reverse transcriptase. Cell Death Dis, 5, 1034. https://doi.org/10.1038/cddis.2013.553
  4. Chen WX, Liu XM, Lv MM, et al (2014). Exosomes from drugresistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS One, 9, 95240. https://doi.org/10.1371/journal.pone.0095240
  5. Chen WX, Zhong SL, Ji MH, et al (2014). MicroRNAs delivered by extracellular vesicles: an emerging resistance mechanism for breast cancer. Tumour Biol, 35, 2883-92. https://doi.org/10.1007/s13277-013-1417-4
  6. Chen Y, Sun Y, Chen L, et al (2013). miRNA-200c increases the sensitivity of breast cancer cells to doxorubicin through the suppression of E-cadherin-mediated PTEN/Akt signaling. Mol Med Rep, 7, 1579-84.
  7. Corcoran C, Rani S, Breslin S, et al (2014). miR-630 targets IGF1R to regulate response to HER-targeting drugs and overall cancer cell progression in HER2 over-expressing breast cancer. Mol Cancer, 13, 71.
  8. Dowsett M, Harper-Wynne C, Boeddinghaus I, et al (2008). HER-2 amplification impedes the antiproliferative effects of hormone therapy in estrogen receptor-positive primary breast cancer. Cancer Res, 61, 8452-8.
  9. Ell B, Qiu Q, Wei Y, et al (2014). The miRNA-23b/27b/24 cluster promotes breast cancer lung metastasis by targeting metastasis-suppressive gene prosaposin. J Biol Chem, 289, 21888-95. https://doi.org/10.1074/jbc.M114.582866
  10. Gan R, Yang Y, Yang X, et al (2014). Downregulation of miR-221/222 enhances sensitivity of breast cancer cells to tamoxifen through upregulation of TIMP3. Cancer Gene Ther, 21, 290-6. https://doi.org/10.1038/cgt.2014.29
  11. Gao T, Han Y, Yu L, et al (2014). CCNA2 is a prognostic biomarker for ER+ breast cancer and tamoxifen resistance. PLoS One, 9, 91771. https://doi.org/10.1371/journal.pone.0091771
  12. Girault I, Bieche I, Lidereau R (2006). Role of estrogen receptor alpha transcriptional coregulators in tamoxifen resistance in breast cancer. Maturitas, 54, 342-51. https://doi.org/10.1016/j.maturitas.2006.06.003
  13. Hoch RV, Thompson DA, Baker RJ, Weigel RJ (1999). GATA-3 is expressed in association with estrogen receptor in breast cancer. Int J Cancer, 84, 122-8. https://doi.org/10.1002/(SICI)1097-0215(19990420)84:2<122::AID-IJC5>3.0.CO;2-S
  14. Hoffman Y, Bublik DR, Pilpel Y, Oren M (2014). miR-661 downregulates both Mdm2 and Mdm4 to activate p53. Cell Death Differ, 21, 302-9. https://doi.org/10.1038/cdd.2013.146
  15. Hutchinson L (2010). Breast cancer: challenges, controversies, breakthroughs. Nat Rev Clin Oncol, 7, 669-70. https://doi.org/10.1038/nrclinonc.2010.192
  16. Jansen MP, Sieuwerts AM, Look MP, et al (2007). HOXB13-to-IL17BR expression ratio is related with tumor aggressiveness and response to tamoxifen of recurrent breast cancer: a retrospective study. J Clin Oncol, 25, 662-8. https://doi.org/10.1200/JCO.2006.07.3676
  17. Jerevall PL, Brommesson S, Strand C, et al (2008). Exploring the two-gene ratio in breast cancer-independent roles for HOXB13 and IL17BR in prediction of clinical outcome. Breast Cancer Res Treat, 107, 225-34. https://doi.org/10.1007/s10549-007-9541-8
  18. Jiang L, He D, Yang D, et al (2014). MiR-489 regulates chemoresistance in breast cancer via epithelial mesenchymal transition pathway. FEBS Lett, 588, 2009-15. https://doi.org/10.1016/j.febslet.2014.04.024
  19. Kayani Mu, Kayani MA, Malik FA, Faryal R (2011). Role of miRNAs in breast cancer. Asian Pac J Cancer Prev, 12, 3175-80.
  20. Li JY, Zhang Y, Zhang et al (2012). Differential distribution of miR-20a and miR-20b may underly metastatic heterogeneity of breast cancers. Asian Pac J Cancer Prev, 13, 1901-6. https://doi.org/10.7314/APJCP.2012.13.5.1901
  21. Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25, 402-8. https://doi.org/10.1006/meth.2001.1262
  22. Ma XJ, Hilsenbeck SG, Wang W, et al (2006). The HOXB13:IL17BR expression index is a prognostic factor in early-stage breast cancer. J Clin Oncol, 24, 4611-9. https://doi.org/10.1200/JCO.2006.06.6944
  23. Ma XJ, Salunga R, Dahiya S, et al (2008). A five-gene molecular grade index and HOXB13:IL17BR are complementary prognostic factors in early stage breast cancer. Clin Cancer Res, 14, 2601-8. https://doi.org/10.1158/1078-0432.CCR-07-5026
  24. Ma XJ, Wang Z, Ryan PD, et al (2004). A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell, 5, 607-16. https://doi.org/10.1016/j.ccr.2004.05.015
  25. Ng CH, Pathy NB, Taib NA, et al (2014). Do clinical features and survival of single hormone receptor positive breast cancers differ from double hormone receptor positive breast cancers? Asian Pac J Cancer Prev, 15, 7959-64. https://doi.org/10.7314/APJCP.2014.15.18.7959
  26. Pedraza V, Gomez-Capilla JA, Escaramis G, et al (2010). Gene expression signatures in breast cancer Perez- distinguish phenotype characteristics, histologic subtypes, and tumor invasiveness. Cancer, 116, 486-96. https://doi.org/10.1002/cncr.24805
  27. Rivas LG, Jerez JM, Carmona R, et al (2014). A microRNA signature associated with early recurrence in breast cancer. PLoS One, 9, 91884. https://doi.org/10.1371/journal.pone.0091884
  28. Perou CM, Sorlie T, Eisen MB, et al (2000). Molecular portraits of human breast tumours. Nature, 406, 747-52. https://doi.org/10.1038/35021093
  29. Porter P (2008). “Westernizing” women's risks? Breast cancer in lower-income countries. N Engl J Med, 358, 213-6. https://doi.org/10.1056/NEJMp0708307
  30. Reddy SD, Pakala SB, Ohshiro K, Rayala SK, Kumar R (2009). MicroRNA-661, a c/EBPalpha target, inhibits metastatic tumor antigen 1 and regulates its functions. Cancer Res, 69, 5639-42. https://doi.org/10.1158/0008-5472.CAN-09-0898
  31. Sand M, Skrygan M, Sand D, et al (2013). Comparative microarray analysis of microRNA expression profiles in primary cutaneous malignant melanoma, cutaneous malignant melanoma metastases, and benign melanocytic nevi. Cell Tissue Res, 351, 85-98. https://doi.org/10.1007/s00441-012-1514-5
  32. Sgroi DC (2009). The HOXB13:IL17BR gene-expression ratio: a biomarker providing information above and beyond tumor grade. Biomark Med, 3, 99-102. https://doi.org/10.2217/bmm.09.2
  33. Tekiner TA, Basaga H (2013). Role of microRNA deregulation in breast cancer cell chemoresistance and stemness. Curr Med Chem, 20, 3358-69. https://doi.org/10.2174/09298673113209990003
  34. Vendrell JA, Ghayad S, Ben-Larbi S, et al (2007). A20/TNFAIP3, a new estrogen-regulated gene that confers tamoxifen resistance in breast cancer cells. Oncogene, 26, 4656-67. https://doi.org/10.1038/sj.onc.1210269
  35. Vetter G, Saumet A, Moes M, et al (2010). miR-661 expression in SNAI1-induced epithelial to mesenchymal transition contributes to breast cancer cell invasion by targeting Nectin-1 and StarD10 messengers. Oncogene, 29, 4436-48. https://doi.org/10.1038/onc.2010.181
  36. Wang HJ, Guo YQ, Tan G, et al (2013). miR-125b regulates side population in breast cancer and confers a chemoresistant phenotype. J Cell Biochem, 114, 2248-57. https://doi.org/10.1002/jcb.24574
  37. Ward A, Shukla K, Balwierz A, et al (2014). MicroRNA-519a is a novel oncomir conferring tamoxifen resistance by targeting a network of tumour-suppressor genes in ER+ breast cancer. J Pathol, 233, 368-79. https://doi.org/10.1002/path.4363
  38. Yan H, Wang S, Yu H, Zhu J, Chen C (2013). Molecular pathways and functional analysis of miRNA expression associated with paclitaxel-induced apoptosis in hepatocellular carcinoma cells. Pharmacology, 92, 167-74. https://doi.org/10.1159/000354585
  39. Zhang MH, Man HT, Zhao XD, Dong N, Ma SL (2014). Estrogen receptor-positive breast cancer molecular signatures and therapeutic potentials (Review). Biomed Rep, 2, 41-52.
  40. Zhao L, Zhu S, Gao Y, Wang Y (2014). Two-gene expression ratio as predictor for breast cancer treated with tamoxifen: evidence from meta-analysis. Tumour Biol, 35, 3113-7. https://doi.org/10.1007/s13277-013-1403-x

Cited by

  1. Predicting miRNA targets for head and neck squamous cell carcinoma using an ensemble method vol.33, pp.1, 2018, https://doi.org/10.5301/ijbm.5000285
  2. The Diverse Roles of microRNAs at the Host–Virus Interface vol.10, pp.8, 2018, https://doi.org/10.3390/v10080440
  3. A Five-microRNA Signature for Survival Prognosis in Pancreatic Adenocarcinoma based on TCGA Data vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-22493-5