References
- Armulik A, Abramsson A, Betsholtz C (2005). Endothelial/pericyte interactions. Circ Res, 97, 512-23. https://doi.org/10.1161/01.RES.0000182903.16652.d7
- Birbrair A, Zhang T, Wang ZM, et al (2015). Pericytes at the intersection between tissue regeneration and pathology. Clin Sci (Lond), 128, 81-93. https://doi.org/10.1042/CS20140278
- Chang L, Liu YY, Zhu B, et al (2009). High expression of the circadian gene mPer2 diminishes the radiosensitivity of NIH 3T3 cells. Braz J Med Biol Res, 42, 882-91. https://doi.org/10.1590/S0100-879X2009005000022
- Chen FH, Chiang CS, Wang CC, et al (2009). Radiotherapy decreases vascular density and causes hypoxia with macrophage aggregation in TRAMP-C1 prostate tumors. Clin Cancer Res, 15, 1721-9. https://doi.org/10.1158/1078-0432.CCR-08-1471
- Dannenberg AJ, Subbaramaiah K (2003). Targeting cyclooxygenase-2 in human neoplasia: rationale and promise. Cancer Cell, 4, 431-6. https://doi.org/10.1016/S1535-6108(03)00310-6
- Debucquoy A, Goethals L, Geboes K, et al (2006). Molecular responses of rectal cancer to preoperative chemoradiation. Radiother Oncol, 80, 172-7. https://doi.org/10.1016/j.radonc.2006.07.016
- de Lussanet QG, Backes WH, Griffioen AW, et al (2005). Dynamic contrast-enhanced magnetic resonance imaging of radiation therapy-induced microcirculation changesin rectal cancer. Int J Radiat Oncol Biol Phys, 63, 1309-15. https://doi.org/10.1016/j.ijrobp.2005.04.052
- Dou X, Wang RB, Yan HJ, et al (2013). Circulating lymphocytes as predictors of sensitivity to preoperative chemoradiotherapy in rectal cancer cases. Asian Pac J Cancer Prev, 14, 3881-5. https://doi.org/10.7314/APJCP.2013.14.6.3881
- Eberstal S, Badn W, Fritzell S, et al (2012). Inhibition of cyclooxygenase-2 enhances immunotherapy against experimental brain tumors. Cancer Immunol Immunother, 61, 1191-9. https://doi.org/10.1007/s00262-011-1196-y
- Harris RE, Casto BC, Harris ZM (2014). Cyclooxygenase-2 and the inflammogenesis of breast cancer. World J Clin Oncol, 5, 677-92. https://doi.org/10.5306/wjco.v5.i4.677
- Khan Z, Khan N, Tiwari RP, et al (2011). Biology of Cox-2: an application in cancer therapeutics. Curr Drug Targets, 12, 1082-93. https://doi.org/10.2174/138945011795677764
- Kiguchi K, Ruffino L, Kawamoto T, et al (2007). Therapeutic effect of CS-706, a specific cyclooxygenase-2 inhibitor, on gallbladder carcinoma in BK5.ErbB-2 mice. Mol Cancer Ther, 6, 1709-17. https://doi.org/10.1158/1535-7163.MCT-07-0015
- Kim NK, Baik SH, Seong JS, et al (2006). Oncologic outcomes after neoadjuvant chemoradiation followed by curative resection with tumor-specific mesorectal excision for fixed locally advanced rectal cancer: Impact of postirradiated pathologic downstaging on local recurrence and survival. Ann Surg, 244, 1024-30. https://doi.org/10.1097/01.sla.0000225360.99257.73
- Kim YM, Pyo H (2013). Different cell cycle modulation by celecoxib at different concentrations. Cancer Biother Radiopharm, 28, 138-45. https://doi.org/10.1089/cbr.2012.1264
- Kirane A, Toombs JE, Larsen JE, et al (2012a). Epithelialmesenchymal transition increases tumor sensitivity to COX-2 inhibition by apricoxib. Carcinogenesis, 33, 1639-46. https://doi.org/10.1093/carcin/bgs195
- Kirane A, Toombs JE, Ostapoff K, et al (2012b). Apricoxib, a novel inhibitor of COX-2, markedly improves standard therapy response in molecularly defined models of pancreatic cancer. Clin Cancer Res, 18, 5031-42. https://doi.org/10.1158/1078-0432.CCR-12-0453
- Koppe MJ, Oyen WJ, Bleichrodt RP, et al (2006). Combination therapy using the cyclooxygenase-2 inhibitor Parecoxib and radioimmunotherapy in nude mice with small peritoneal metastases of colonic origin. Cancer Immunol Immunother, 55, 47-55. https://doi.org/10.1007/s00262-005-0704-3
- Matsumoto S, Yasui H, Batra S, et al (2009). Simultaneous imaging of tumor oxygenation and microvascular permeability using Overhauser enhanced MRI. Proc Natl Acad Sci USA, 106, 17898-903. https://doi.org/10.1073/pnas.0908447106
- Pyo H, Choy H, Amorino GP, et al (2001). A selective cyclooxygenase-2 inhibitor, NS-398, enhances the effect of radiation in vitro and in vivo preferentially on the cells that express cyclooxygenase-2. Clin Cancer Res, 7, 2998-3005.
- Raza A, Franklin MJ, Dudek AZ (2010). Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am J Hematol, 85, 593-8. https://doi.org/10.1002/ajh.21745
- Sauer R, Becker H, Hohenberger W (2004). Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med, 351, 1731-40. https://doi.org/10.1056/NEJMoa040694
- Senzaki M, Ishida S, Yada A, et al (2008). CS-706, a novel cyclooxygenase-2 selective inhibitor, prolonged the survival of tumor-bearing mice when treated alone or in combination with anti-tumor chemotherapeutic agents. Int J Cancer, 122, 1384-90.
- Shin YK, Park JS, Kim HS, et al (2005). Radiosensitivity enhancement by celecoxib, a cyclooxygenase (COX)-2 selective inhibitor, via COX-2-dependent cell cycle regulation on human cancer cells expressing differential COX-2 levels. Cancer Res, 65, 9501-9. https://doi.org/10.1158/0008-5472.CAN-05-0220
- Tang SC, Chen YC (2014). Novel therapeutic targets for pancreatic cancer. World J Gastroenterol, 20, 10825-44. https://doi.org/10.3748/wjg.v20.i31.10825
- Tsai JH, Makonnen S, Feldman M, et al (2005). Ionizing radiation inhibits tumor neovascularization by inducing ineffective angiogenesis. Cancer Biol Ther, 4, 1395-400. https://doi.org/10.4161/cbt.4.12.2331
- Yokouchi H, Kanazawa K, Ishida T, et al (2014). Cyclooxygenase-2 inhibitors for non-small-cell lung cancer: A phase II trial and literature review. Mol Clin Oncol, 2, 744-50.
- Valentini V, Coco C, Picciocchi A, et al (2002). Does downstaging predict improved outcome after preoperative chemoradiation for extraperitoneal locally advanced rectal cancer? A long-term analysis of 165 patients. Int J Radiat Oncol Biol Phys, 53, 664-74. https://doi.org/10.1016/S0360-3016(02)02764-5
- Watwe V, Javle M, Lawrence D, et al (2005). Cyclooxygenase-2 (COX-2) levels before and after chemotherapy: a study in rectal cancer. Am J Clin Oncol, 28, 560-4. https://doi.org/10.1097/01.coc.0000182476.34375.17
Cited by
- Parecoxib inhibits glioblastoma cell proliferation, migration and invasion by upregulating miRNA-29c vol.6, pp.3, 2016, https://doi.org/10.1242/bio.021410