DOI QR코드

DOI QR Code

A Case Study of a Text Mining Method for Discovering Evolutionary Patterns of Mobile Phone in Korea

국내 휴대폰의 진화패턴 규명을 위한 텍스트 마이닝 방안 제안 및 사례 연구

  • On, Byung-Won (Dept. of Statistics and Computer Science, Kunsan National University)
  • 온병원 (군산대학교 통계컴퓨터과학과)
  • Received : 2014.09.12
  • Accepted : 2014.12.06
  • Published : 2015.02.28

Abstract

Systematic theory, concepts, and methodology for the biological evolution have been developed while patterns and principles of the evolution have been actively studied in the past 200 years. Furthermore, they are applied to various fields such as evolutionary economics, evolutionary psychology, evolutionary linguistics, making significant progress in research. In addition, existing studies have applied main biological evolutionary models to artifacts although such methods do not fit to them. These models are also limited to generalize evolutionary patterns of artifacts because they are designed in terms of a subjective point of view of experts who know well about the artifacts. Unlike biological organisms, because artifacts are likely to reflect the imagination of the human will, it is known that the theory of biological evolution cannot be directly applied to artifacts. In this paper, beyond the individual's subjective, the aim of our research is to present evolutionary patterns of a given artifact based on peeping the idea of the public. For this, we propose a text mining approach that presents a systematic framework that can find out the evolutionary patterns of a given artifact and then visualize effectively. In particular, based on our proposal, we focus mainly on a case study of mobile phone that has emerged as an icon of innovation in recent years. We collect and analyze review posts on mobile phone available in the domestic market over the past decade, and discuss the detailed results about evolutionary patterns of the mobile phone. Moreover, this kind of task is a tedious work over a long period of time because a small number of experts carry out an extensive literature survey and summarize a huge number of materials to finally draw a diagram of evolutionary patterns of the mobile phone. However, in this work, to minimize the human efforts, we present a semi-automatic mining algorithm, and through this research we can understand how human creativity and imagination are implemented. In addition, it is a big help to predict the future trend of mobile phone in business and industries.

생물의 진화패턴과 원리는 지난 200년간 학문적인 영역에서 활발히 연구되어 왔으며 생명의 진화에 대한 체계적인 이론, 개념 및 방법론이 제시되었다. 그리고 진화경제학, 진화심리학, 진화언어학 등 다양한 분야에 적용되어 큰 연구 성과를 거두고 있다. 이와 더불어 진화생물학 논리를 인간이 만든 제품에 적용하려는 시도도 병행되어 왔다. 기존 연구들이 생물진화 논리를 인공물에 그대로 적용하거나 해당 분야 전문가의 직관에 근거하여 진화 모형을 구축하는 것이어서 진화 모형에 대한 일반화를 시키기에는 한계를 가진다. 또한 생물과 달리 인공물은 인간 의지의 상상력이 반영되기 때문에 생물진화 이론을 곧바로 적용할 수 없다고 알려져 왔다. 따라서 본 논문에서는 특정인의 주관에 벗어나 일반 대중들의 생각을 엿보고 이를 바탕으로 진화 모형을 구축하는 것을 목표로 한다. 이를 위해, 인공물을 계통적으로 분류할 수 있는 체계적인 틀을 제시하는 텍스트 마이닝 방안과 그 결과물을 효과적으로 보여줄 수 있는 시각화 방안을 차례로 제안한다. 특히, 제안방안을 바탕으로 최근 혁신의 아이콘으로 떠오르고 있는 휴대폰과 스마트폰에 대한 사례 연구를 집중적으로 수행한다. 지난 10년간 국내에서 출시된 휴대폰과 스마트폰에 대한 리뷰 포스트들을 수집하고 분석하여, 진화패턴을 발견하고 요약해서 보여주며 그 결과에 대해서 자세히 토의한다. 더욱이 이러한 작업은 소수의 전문가들이 방대한 문헌과 자료를 조사 정리하여, 오랜 시간에 걸쳐 진화계통도를 그리게 되는 매우 지난한 작업이다. 하지만 본 논문에서 제안한 방안은 반자동(semi-automatic) 마이닝 알고리즘으로 인간의 노력을 최소화할 수 있어 그 효용 가치가 높다. 이러한 연구를 통해 인간의 창의력과 상상력이 구현되는 방식을 이해하고 휴대폰의 미래 모습을 전망하는데 있어 유관기업들에게 큰 도움을 줄 것이다.

Keywords

References

  1. Arthur, W., "Increasing returns and path dependency in the economy," University of Michigan Press, 1994
  2. Basalla, G., "The evolution of technology," Cambridge University Press, 1988
  3. Best, M., "Models for interacting populations of memes: Competition and niche behavior," Journal of Memetics, Vol. 1, No. 1, pp.1-9, 1997
  4. Blei, D., Ng, A., Jordan, M., and Lafferty, J., "Latent Dirichlet Allocations," Journal of Machine Learning Research, Vol. 3, No. 4-5, pp.993-1022, 2003
  5. Blei, D. and Lafferty, J., "Dynamic topic models," International Conference on Machine Learning, New York, USA, 2006
  6. Blei, D., "Probabilistic topic models," Communications of the ACM, Vol. 55, No. 4, pp.77-84, 2012 https://doi.org/10.1145/2133806.2133826
  7. Borshchev, A., and Filippov, A., "From system dynamics and discrete event to practical agent based modeling: Reasons, techniques, and tools," International Conference of System Dynamics Society, July 25-29, Oxford, England
  8. Callon, M. and Law, J., "After the individual in society: Lessons on collectivity from science, technology and society," Canadian Journal of Sociology, Vol. 22, No. 2, pp.165-182, 1997 https://doi.org/10.2307/3341747
  9. Cho, H. and Yang, S., "The study on the effects of system quality of smart phone on use of intention," Journal of the Korea Society of Computer and Information, Vol. 16, No. 5, pp. 147-152, 2011 https://doi.org/10.9708/jksci.2011.16.5.147
  10. Choi, J., Baek, Y., and Han, S., "A study of receptive factors of smart phones service from the user's perspective," Journal of the Korea Society of Computer and Information, Vol. 18, No. 11, pp. 181-190, 2013 https://doi.org/10.9708/jksci.2013.18.11.181
  11. Dalvi, N., Kumar, R., Pang, B., and Tomkins, A., "Matching reviews to objects using a language model," Conference on Empirical Methods in Natural Language Processing (EMNLP), Singapore, August 2009
  12. Fei-Fie, L. and Perona, P., "A Bayesian hierarchical model for learning natural science categories," IEEE Computer Vision and Pattern Recognition, 2005
  13. Horx, M., "Technolution," 21st Centaury Books, 2009
  14. Hughes, T., "Networks of power: Electrification in western society, 1880-1930," Johns Hopkins University Press, 1983
  15. Kam, M. and Song, M., "A study on differences of contents and tones of arguments among newspapers using text mining analysis," Journal of Intelligent Information Systems, Vol. 18, No.3, pp.53-77, 2012
  16. Kang, S., "Korean lexical analysis," http://nlp.kookmin.ac.kr/HAM/kor/ham-intr.html, 2012
  17. Khanafiah, D. and Situngkir, H., "Visualizing the Phylomemetic tree - Innovation as evolutionary process," Journal of Social Complexity, Vol. 2, No. 2, 2006
  18. Lee, C., Hur, J., Oh, H., Kim, H., Ryu, P., and Kim, H., "Technology trends of issue detection and predictive analysis on social big data," Electronics and Telecommunications Research Institute, 2013
  19. Lee, H., "The evolution of products," Journal of Korean Society of Design Science Vol. 44, 2001, pp.137-146
  20. Loewy, R., "Industrial design," Faber & Faber, 1979
  21. Mei, Q. and Zhai, C., "Discovering evolutionary theme patterns from text - An exploration of temporal text mining," SIGKDD 2005, August 21-24, Chicago, Illinois, USA
  22. Misra, H., Yvon, F., Jose, J., and Cappe, O., "Text segmentation via topic modeling: An analytical study," International Conference on Information and Knowledge Management (CIKM), Hong Kong, China, November 2009
  23. Nelson, R. and Winter, S., "An evolutionary theory of economic change," Belknap Press, 1982
  24. Oh, H., Choi, Y., Shin, W., Jeong, Y., and Myaeng, S., "Trend properties and a ranking method for automatic trend analysis," Journal of KIISE : Software and Applications Vol. 36, No. 3, 2009, pp.236-243
  25. Rosen-Zvi, M., Griffiths, T., Steyvers, M., and Smith P., "The author-topic model for authors and documents," Conference on Uncertainty in Artificial Intelligence, AUAI Press, 2004
  26. Sun, B., Mitra, P., Zha, H., and Giles, C., "Topic segmentation with shared topic detection and alignment of multiple documents," SIGIR, Amsterdam, Netherlands, July 2007
  27. Wagner, C., "Topic models," http://www.slideshare.net/clauwa/topic-models-5274169, 2012
  28. Recorded Future, https://www.recordedfuture.com, 2012
  29. JGibbLDA: A Java implementation of Latent Dirichlet Allocation (LDA) using Gibbs sampling for parameter estimation and inference, http://jgibblda.sourceforge.net, 2012