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Abstract
Whilst it is clear that increasing temperatures from global environmental change will impact the positions of alpine 

treelines, it is likely that a range of regional and local scaled factors will mediate the overall impact of global scale climate 

drivers. We summarized 12 categories of abiotic and biotic factors as 4 groups determining treeline positions. First, there 

are global factors related to climate-induced growth limitation and carbon limitation. Second, there are seven regional 

and local factors related to treeline dynamics including frost stress, topography, water stress, snow, wind, fire and non-

fire disturbance. Third, species-specific factors can control treeline dynamics through their influence on reproduction 

and life history traits. Fourth, there are positive feedbacks in structuring the dynamics of treelines. Globally, the com-

monly accepted growth limitation hypothesis is that growth at a treeline is limited by temperature. Meanwhile, positive 

feedbacks between canopy cover and tree establishment are likely to control the spatial pattern and temporal dynamics 

of many treelines. The presence of non-linear dynamics at treelines has implications for the use of treelines as barometers 

of climate change because the lagged responses and abrupt shifts inherent in non-equilibrium systems may combine to 

mask the overall climate trend. 
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INTRODUCTION

Average temperatures have risen globally over the past 

century, with the most pronounced and rapid changes 

at high altitudes (IPCC 2007, 2013). Within these zones, 

treeline positions are widely thought to be temperature 

sensitive and potentially responsive to a warming climate 

(Lenoir et al. 2008, Harsch et al. 2009, Kreyling et al. 2010, 

Kullman 2010a). For this reason, the dynamics of the up-

per altitudinal or latitudinal treeline have been studied 

around the globe with the aim of detecting change, un-

derstanding responses to temperature variation, and 

evaluating the threat to alpine biota in response to treeline 

movement (Kong 1999, 2000, Walther 2003, Holtmeier 

and Broll 2005, Ihm et al. 2007, 2012, Case and Duncan 

2014, Hagedorn et al. 2014, Smith-McKenna et al. 2014). 

Harsch et al. (2009) reported a global dataset of 166 sites 

for which treeline dynamics had been recorded since AD 

1900: advance was recorded at 52% of sites with only 1% 

reporting treeline recession. Recent treeline expansion 

has been reported for many locations around the world: 

Russia (MacDonald et al. 2008), Asia (Zhang et al. 2001), 

Europe (Kullman 2001), India (Singh et al. 2012), North 

America (Szeicz and MacDonald 1995) and New Zealand 

(Wardle and Coleman 1992). An assessment of treelines 

for the Swiss Alps (Gehrig-Fasel et al. 2007, Díaz-Varela et 

Received 01 November 2014, Accepted 29 December 2014

*Corresponding Author

E-mail: keco@mokpo.ac.kr
Tel: +82-61-450-2341  

http://dx.doi.org/10.5141/ecoenv.2015.001

Review Paper

This is an Open Access article distributed under the terms of 
the Creative Commons Attribution Non-Commercial Licens 
(http://creativecommons.org/licenses/by-nc/3.0/) which 

permits unrestricted non-commercial use, distribution, and reproduction in any 
medium, provided the original work is properly cited.



J. Ecol. Environ. 38(1): 1-14, 2015

http://dx.doi.org/10.5141/ecoenv.2015.001 2

on the type as well as the strength of climate-change re-

sponses (Harsch and Bader 2011). For example, diffuse 

treelines may be more responsive to warming because 

they are more strongly growth limited. In contrast, abrupt 

or krummholz treelines may be more strongly influenced 

by stress factors associated with winter conditions that 

lead to plant damage and limit survival. Krummholz form, 

characterized by a stunted habit, is commonly attributed 

to damage associated with factors such as wind abrasion, 

snow and ice damage. Hence, advance in krummholz and 

abrupt treelines may occur only when winter warming is 

sufficient to ameliorate other constraints, or when tem-

peratures increase sufficiently to compensate for those 

constraints. 

A range of regional and local scale factors will affect the 

overall impact of global scale climate drivers (Grabherr et 

al. 1994, Körner 1998, Jobbagy and Jackson 2000, Cullen 

et al. 2001, Dullinger et al. 2004, Walther et al. 2005). As-

sessment of the response of the treeline to environmental 

variability at regional and local scales is complex (Batllori 

et al. 2009) and requires a solid organizational framework. 

We summarized 12 categories of abiotic and biotic factors 

as 4 groups of global, regional, and local factors, species-

specific traits, and positive feedbacks to differentiate the 

effects of each factor on the treeline positions (Fig. 2 and 

Table 1). Of prime importance are global factors related 

to climate. The thermal limitation of either carbon uptake 

al. 2010) found a decadal increment of 32 m of mean alti-

tudinal increment for a 12-year period. The record of tem-

poral treeline dynamics on a slope in the Austrian central 

Alps (Wallentin et al. 2008) indicated a decadal advance of 

28 m for the maximum elevation of the treeline and 17 m 

for the mean elevation in the period 1954-2006. Feeley et 

al. (2011) in a study of elevational shifts of the 38 Andean 

tree genera reported a mean migration rate of 2.5 m yr-1.
The tree limit of upright tree growth is defined as the 

line connecting the uppermost upright trees with a mini-

mum height of 2 m (Holtmeier 2003). This definition of 

tree limits captures three important vegetation boundar-

ies: “treeline” (the point where trees disappear), the “for-

estline” (the upper limit of closed-canopy forest) (Wieser 

et al. 2009, Harsch and Bader 2011), and the “treeline 

ecotone” (the transition zone from the uppermost closed 

forest to treeless subalpine and alpine vegetation)(Fig. 1) 

(Körner and Paulsen 2004, Autio 2006, Fajardo et al. 2011, 

Kim 2012, Körner 2012). Four primary treeline forms have 

been distinguished (Kong and Watts 1993, Chang et al. 

1998, Cuevas 2000, Moen et al. 2004, Harsch et al. 2009, 

Harsch and Bader 2011, Green and Venn 2012): diffuse, 

abrupt, island and krummholz. Treeline form indicates 

the relative dependence of tree performance on various 

aspects of the external climate and other environmental 

factors (especially summer warmth versus winter stress-

ors) and on internal feedbacks, thus allowing inferences 

Fig. 1. Treeline region: ideas and concepts mainly according to Heikkinen et al. (2002) and Körner and Paulsen (2004).
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et al. 1967, Stevens and Fox 1991). Secondarily, there are 

six regional and local factors related to treeline dynamics: 

(1) frost stress (Körner 1998, Körner and Paulsen 2004), 

(2) topography (Brown 1994a, 1994b, Leonelli et al. 2011), 

(3) water stress (Grace 1989, Richardson and Friedland 

2009), (4) snow (Walsh et al. 1994, Gottfried et al. 2011), 

(5) wind (Holtmeier and Broll 2007, Richardson and 

Friedland 2009),(6) fire (Shankman and Daly 1988, Stueve 

et al. 2009), and (7) disturbance (Gehrig-Fasel et al. 2007, 

Tomback and Resler 2007). Thirdly, species-specific traits 

deal with the effects of treeline species on treeline posi-

tions including reproduction (Sveinbjörnsson et al. 1996, 

Körner 1998) and life history traits (Szeicz and Macdon-

ald 1995, Motta and Nola 2001). Finally, there are positive 

feedbacks in structuring the dynamics of treelines (Wil-

son and Agnew 1992, Malanson et al. 2011).

GLOBAL FACTORS - TEMPERATURE

The most likely explanations for the formation of alpine 

treelines emphasize the temperature-factor characteris-

tic of higher altitudes such as growing season length and 

summer temperatures (Table 1 and Fig. 2). Any common 

treeline theory needs to account for higher- and lower-

latitude conditions, but the traditional view of tempera-

ture-controlled tree growth at upper elevations is largely 

based on high-latitude treelines (Handa et al. 2005, Shi et 

al. 2008). The treelines of the world’s mountains seem to 

follow a common isotherm, but this is only supported by 

indirect evidence. Actually, high altitude climatic treelines 

are associated with a seasonal mean ground temperature 

of 6.7-13.0°C (Cogbill and White 1991, Körner and Paulsen 

2004). This temperature-treeline relationship empha-

sizes the length and mean temperature of the growing 

season (Hättenschwiler and Körner 1995, Körner 1998, 

Sveinbjörnsson 2000, Daniels and Veblen 2003, Hoch and 

Körner 2003, Lloyd and Fastie 2003, Camarero and Guti-

errez 2004, Wang et al. 2006). Air and soil temperature 

has recently been identified as the most important fac-

tor in controlling the treeline positions across the world 

(Körner and Paulsen 2004, Leonelli et al. 2011). Seasonal 

mean temperatures are higher (7-8°C) in the temperate 

and Mediterranean zone treelines, and are lower in equa-

torial treelines (5-6°C) and in the subarctic and boreal 

zone (6-7°C). While air temperatures are higher than soil 

temperatures in warm periods, and are lower than soil 

temperatures in cold periods, the daily means of air and 

soil temperatures are almost the same at 6-7°C, a physics 

driven coincidence with the global mean temperature at 

(photosynthesis) or carbon investment (growth) can be 

explained by limitations dictated by a globally common 

isotherm: (1) growth limitation (Tranquillini 1979, Körner 

1998, Shi et al. 2006) and (2) carbon limitation (Schulze 

Table 1. Global, regional, and local factors, species-specific traits, and 
positive feedbacks determining treeline positions in high altitude envi-
ronments

Abiotic and biotic factors Details

Global factor
    Growth limitation Growing season temperature and length
    Carbon limitation Growing season temperature and length

Regional and local factor
    Frost stress Frost

Frost desiccation 
Phototoxic effects after frost

    Topography and soil Topography
Aspect
Soil types
Soil moisture
Substrate (litter depth etc.)
Soil freeze-thaw processes
Solifluction
Soil creep

    Water relation Water stress
Winter desiccation

    Snow Snow patch
Snow cover
Snow avalanches
Snowmelt 
Snow molds

    Wind Wind exposure
Wind patterns
Wind erosion mortality

    Fire Fire exposure
Fire pattern

    Non-fire disturbance Pathogen
Herbivory
Grazing 
Land use 
Fragmentation

Species-specific trait

    Reproduction Pollination
Pollen tube growth
Fecundity
Type of reproduction
Seed development
Seed dispersal
Seedbed suitability
Germination 
Seedling establishment

    Life history trait Growth rate of tree
Phenology
Cover/density of population
Development of vertical tree stems from 

krummholz
Competitive interactions of soil 

moisture, light and/or nutrients

Positive feedback Canopy cover 
Tree establishment
Spatial pattern and process
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as the western (very high altitude) treelines of the eastern 

Himalayas (Shi et al. 2008). Environmental stress affects 

growth (carbon investments) long before they affect car-

bon assimilation (Körner 2003). The growth limitation hy-

pothesis is consistent with the correlation of tree growth 

with mid-summer temperatures, frequently observed at 

the treeline, and can be evoked to explain why the altitude 

of treelines is usually well correlated with mid-summer 

temperatures (Körner and Paulsen 2004). 

Carbon limitation

Carbon limitation because of a shortage of photo-

assimilates has long been regarded as the key to explain 

the upper altitudinal or latitudinal treeline on a global 

scale (Schulze et al. 1967, Stevens and Fox 1991). The car-

bon limitation hypothesis draws on the carbon balance 

of photosynthesis and respiration (Körner 2003). Körner 

(1998) hypothesized that carbon gain is restricted by the 

growing season lengths, whereby low temperatures and 

short growing periods limit photosynthesis to the point 

that it is exceeded by respiratory demand. To date, there 

has been little evidence in support of the carbon limita-

tion hypothesis, although no direct manipulative test has 

been carried out. A recent study did not find evidence for 

carbon processing (sink) limitations, but rather photo-

synthetic carbon gain (source) limitations in Himalayan 

trees at the treeline (Li et al. 2008). Also, significant reduc-

tions in photosynthetic carbon gain in seedlings just older 

than the pre-establishment life stage (>3 years old) have 

been reported (Johnson et al. 2004), although limitations 

in carbon gain versus processing have not been differ-

entiated. Meanwhile, the photosynthetic carbon uptake 

in treeline trees does not appear to be highly sensitive 

to temperature (Shi et al. 2008). Furthermore, studies 

of the mobile carbon pool, measured as non-structural 

treelines (Körner and Paulsen 2004). This translates to low 

soil temperatures that reduce soil nutrient availability by 

lowering microbial soil mineralization rates and nitrogen 

fixation and by reducing nutrient uptake capacity and re-

ducing root growth and thus their exploitable soil volume 

(Moen et al. 2008). Two hypotheses have been put for-

ward to link temperature, plant metabolism and treeline 

positions: (1) the growth (i.e., sink) limitation hypothesis 

(Körner 1998), a sink limitation through thermal limita-

tion of meristematic activity with direct consequences for 

structural growth, and (2) the carbon (i.e., source) limita-

tion hypothesis (Stevens and Fox 1991), a source limita-

tion through insufficient net carbon acquisition due to 

low daytime temperatures.

Growth limitation

The commonly accepted hypothesis is that growth at a 

treeline is limited by temperature (Hoch and Körner 2003, 

Shi et al. 2006, Susiluoto et al. 2007, Shi et al. 2008, Hoch 

and Körner 2009). Körner (1998) argued that the develop-

ment of new tissues in treeline trees are less likely to be 

limited by the supply of photosynthetic assimilates, but 

rather by the rate at which the products can be utilized. 

This is known as the growth limitation hypothesis. In a 

comparison with different treeline Pinus species from 

three latitudes (Mexico, Swiss Alps, and Sweden), the 

concentration of non-structural carbonates and lipids 

(NSC) was not lower, but rather higher at the tree limit, 

compared to tall montane forests, supporting growth 

rather than carbon limitation (Hoch et al. 2002, Hoch and 

Körner 2003, Handa et al. 2005, Hoch and Körner 2005, 

Fajardo et al. 2012). The studies have demonstrated that 

NSC concentration rather increases as one approaches 

the tree limit. This holds true for both deciduous and ev-

ergreen taxa and for the eastern (lower altitude) as well 

Fig. 2. Effects of global, regional, and local factors, species-specific traits and positive feedbacks on treeline migration. Double ended arrow indicates a 
feedback relationship between processes. Adapted from Tranquillini (1979), Smith et al. (2006) and concepts discussed in this paper. 
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(Pauli et al. 1996, Guisan and Theurillat 2000). The mass-

elevation effect describes variation in the treeline based 

on mountain size and location and was introduced to ac-

count for the observed tendency for temperature-related 

factors such as treeline and snowline to occur at higher 

elevations in the warmer and drier continental climate 

of the inner regions than on their outer margins (Odland 

2009, Leonelli et al. 2011). Under warmer temperature 

conditions, treeline shifts are therefore expected to be 

more evident in the inner regions since the treelines are 

more likely to shift upward into the alpine environments 

(Leonelli et al. 2011). Resler (2006) highlights the impor-

tance of surface geomorphic features, specifically terrace 

risers, increasing favorable local site conditions, largely by 

protecting seedlings from wind in the study of the role of 

surface geomorphic features in tree establishment at the 

alpine treeline in Glacier National Park, Montana. The 

sheltering effect of surface features enables initial seed-

ling establishment, and in some cases survival, above 

current treeline locations, thereby initiating a positive 

feedback effect that encourages subsequent tree estab-

lishment. Geomorphic features are therefore important 

in linking scales of patterns and positions at the alpine 

treeline.

The effects of water stress limiting the altitude of a 

treeline has been reported (Marchand and Chabot 1978, 

Cochrane and Slatyer 1988, Rada et al. 1996, Cairns and 

Malanson 1998, Smith et al. 2003). Decreasing moisture 

contents and osmotic potential values at wind-exposed 

treeline during the winter months can be explained by the 

fact that at such sites the soil remains frozen to a depth 

of 1 m. The soil thaws near the surface only at the end of 

April, but later in May it thaws out to a greater depth (Au-

litzky 1961, Baig and Tranquillini 1980). Plants wintering 

on such sites are unable to absorb soil moisture, thus their 

survival depends upon tissue water reserves and drought 

resistance.

The proportion of trees suffering serious snow load 

damage has been reported to be 15-76% at the treeline 

(Walsh et al. 1994, Autio and Colpaert 2005, Bebi et al. 

2009), so the damage of this kind is a key factor control-

ling the treeline positions. Growing season length and 

moisture can be affected by snow cover. In some places, 

snow will suppress the treeline by shortening the grow-

ing season and in others, snow encourages an upward 

expansion of the treeline along the elevation gradient by 

providing more water (Walsh et al. 1994). But these fac-

tors alone cannot explain why snow-free ridges at high el-

evations do not have trees, nor why some tropical moun-

tains with little or no annual snowfall still have treelines 

carbonates and lipids, in trees across an altitudinal and 

latitudinal transect at the treeline have shown that the 

accumulated carbon reserves are not lower at high eleva-

tions compared to low elevations (Hoch and Körner 2003, 

Körner 2003, Handa et al. 2005).

REGIONAL AND LOCAL FACTORS

The second suite of factors determining treeline po-

sitions operate at regional and local scales (Walsh et al. 

1994, Daniels and Veblen 2003, Körner and Paulsen 2004, 

Malanson et al. 2007, Leonelli et al. 2011). All these factors 

interact with and, in some cases, supersede the influence 

of climate to explain treeline positions (Table 1 and Fig. 

2). Thus, research on climate impacts on treelines at re-

gional and local scales needs to identify multiple poten-

tial sources of variation in the structure and dynamics of 

treelines (Daniels and Veblen 2003).

Frost, frost desiccation or phototoxic effects may con-

tribute to treeline formation (Körner 1998, Berdanier 

2010). Frost damage does not threaten tree survival in 

the temperate zone treelines, but may lead to distorted 

growth by causing injury damages (Tranquillini 1979, 

Körner 2012, Rixen et al. 2012). Frost desiccation occurs 

during late winter when the soil is frozen but skies are 

clear and solar radiation is high. As exposed frosted foli-

age warms in direct sun, a strong vapor pressure deficit 

is created, evapotranspiration from the leaf is high, and 

desiccation occurs (Sakai 1970, Richardson and Friedland 

2009). Frost desiccation is mainly observed in young trees 

and diminishes with age and size of branches or trees 

(Körner 1998). Although this frost desiccation may be a 

problem for young trees above the treeline in some parts 

of the temperate zone, this factor does not appear to be 

widespread for established trees. 

The role of topographical factors in controlling future 

treeline positions is manifest in the interaction of climate 

with elevation, aspect and soil properties at higher alti-

tudes (Brown 1994a, 1994b, Gottfried et al. 1999, Walsh et 

al. 2003, Butler et al. 2007, Bader and Ruijten 2008, Leonel-

li et al. 2009, 2011, Scherrer and Körner 2011) (Table 1 and 

Fig. 2). Mountains are characteristically conical in shape, 

and climate change impact scenarios usually assume that 

a smaller surface area will be available as species shift to 

higher elevations. However, as the frequency distribu-

tion of additional physiographic factors (e.g., slope an-

gle) changes with increasing elevation (e.g., fewer gentle 

slopes available at higher elevation), upslope migrating 

species will encounter increasingly unsuitable conditions 
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forests themselves can cause the mortality of large pop-

ulations of trees at the treeline. For example, fires in the 

Colorado Front Range (Shankman and Daly 1988) and the 

Cascades National Park (Hemstrom and Franklin 1982, 

Stueve et al. 2009) of the western USA, severely burned ex-

tensive areas of high-elevation forest, effectively lowering 

the existing treeline. Secondly, the destruction of seed-

lings established upslope by fire may prevent the advance 

of treelines. This mechanism is exacerbated by the slow 

growth rates of seedlings at higher altitudes such that 

they cannot escape the fire trap (Murphy and Bowman 

2012). Thirdly, the removal of upslope vegetation cover 

may reduce competition pressure and provide substrate 

for seedling establishment and treeline advance (Noble 

1980, Green 2009). The impacts of fire on treelines are par-

ticularly relevant to regions with a climate and vegetation 

conducive to fire such as the Rocky Mountains of North 

America, Patagonia in South America and the Australian 

Alps. Anthropogenic climate change has the capacity to 

alter fire regimes fundamentally through changing sea-

sonal patterns of temperature, wind and precipitation, es-

pecially the occurrence of extreme weather events (Scott 

et al. 2014). Clearly, any consideration of the effect of 

global climate change on treelines will have to factor in a 

possible upregulation of fire in flammable alpine environ-

ments and their effect on tree populations and seedling 

recruitment. 

Natural disturbance regimes related to herbivory, fun-

gal pathogens, grazing and human disturbance such as 

land use changes and fragmentation are significant fac-

tors determining treeline dynamics (Cullen et al. 2001, 

Daniels and Veblen 2003, Batllori and Gutiérrez 2008, 

Brown 2010, Leonelli et al. 2011) (Table 1 and Fig. 2). 

Losses of a dominant treeline species by invasive forest 

pathogen may result in changes in vegetation patterns 

at the treeline (Harvell et al. 2002, Tomback and Resler 

2007). Herbivores can limit the treeline below its potential 

at the landscape scale (Cairns and Moen 2004, Speed et 

al. 2010, Herrero et al. 2011). The presence of large num-

bers of small trees above the current treeline at a site in 

northern Sweden that experiences limited reindeer pop-

ulations (Rangifer tarandus) suggests range expansion 

at low levels of herbivory (Cairns and Moen 2004). Other 

locations in the same region with higher reindeer popu-

lations have considerably fewer small trees, suggesting 

that range expansion of treelines is occurring much more 

slowly, if at all. The use of treelines as indicators of climate 

change is confounded by the activity of herbivores, which 

may either strengthen or nullify the impacts of a changed 

climate. Similar arguments are likely to be applicable to 

(Hättenschwiler and Smith 1999, Richardson and Fried-

land 2009, Barbeito et al. 2012). Snowload also plays an 

important role in the protection of young trees from frost 

and wind damage in treelines (Holtmeier 2003, Holtmeier 

and Broll 2007, Devi et al. 2008). In this case, snow accu-

mulation around trees might induce an insulation and 

protection from injurious climatic effects, which may al-

low establishing seedlings to grow into successful trees. In 

contrast, long-lying snow may curtail the growing season 

and increase snow fungus infection (Phacidium infes-

tans, Herpotrichia junipeperi, Gremmeniella abietaina) of 

seedlings of evergreen conifers, mainly in wet years and 

in maritime regions (Holtmeier and Broll 2007). The in-

fluence of wind on tree growth and positions in treelines 

can be interpreted within the context of stress and strain 

relationships (Grace 1977, Telewski 1995, Richardson 

and Friedland 2009). The primary stress is the force of 

the wind applied to the tree. The fluttering of leaves and 

branches, the back and forth swaying motion of the stems, 

the displacement or wind-induced lean of the stems and 

failure of the stems or roots, resulting in windthrow, are 

the viable, mechanical strains manifested by the tree. 

Secondary stresses include the influence of desiccation 

by wind, abrasion by wind-driven snow and friction from 

strong winds (Scott et al. 1993). As the magnitude of the 

stress (windspeed) increases, so do the resulting strains, 

resulting in a cascade of physiological strain responses. 

The physiological responses range from rapid changes 

in transpiration and photosynthesis at the foliar level to 

reduced translocation, callose formation and ethylene 

production in the phloem and cainbial zone. Long-term 

developmental and structural changes occur in canopy 

architecture, leaf, stem and root morphology, and modifi-

cations of cell structure and biomechanical properties of 

the xylem. Especially, wind appears to play a role in many 

northern hemisphere treelines because of common des-

iccation of high-elevation trees (Scott et al. 1993, Hätten-

schwiler and Smith 1999, Sveinbjörnsson 2000, Kullman 

2005, Richardson and Friedland 2009). Wind also plays a 

role in determining the tree heights and treeline positions 

at most of the world’s treelines (Grace 1977, Sveinbjörns-

son 2000). Many tree species, particularly conifers with a 

distinct leader growth, take on flag-, hedge- or even mat-

like growth forms in the windiest situations. 

Fire can affect local or regional treelines in several 

ways. Firstly, fire can cause the depression of altitudinal 

limits of treelines through the physical destruction of 

stands of trees (Wilson and Agnew 1992, Noble 1993). Un-

der this scenario, particularly severe fires propagated in 

flammable treeless alpine environments or the treeline 



Dynamics of alpine treelines - positive feedbacks and controls

7 http://www.jecoenv.org

between environmental factors contributing to treeline 

formation and how these factors influence different life 

stages remains a major research challenge (Barbeito et 

al. 2012). This studies of the spatial and temporal dynam-

ics of tree mortality and growth at treelines in the Swiss 

Alps provide experimental evidence that tree survival and 

height growth require different environmental condi-

tions and that even small changes in the duration of snow 

cover, in addition to changes in temperature, can strongly 

impact tree survival and growth patterns at treelines. Fur-

ther, their results show that the relative importance of dif-

ferent environmental variables for tree seedlings changes 

during the juvenile phase as they grow taller.

THE ROLE OF POSITIVE FEEDBACKS

The role of positive feedbacks in structuring the spatial 

pattern and temporal dynamics of treelines must be con-

sidered in models that put forward treelines as indicators 

of climate and environmental change. Positive feedbacks 

arise when vegetation communities actively modify their 

environment in a direction that enhances its own growth 

and survival, and simultaneously hinders or constrains 

other vegetation types (Wood et al. 2011). Positive feed-

backs are emerging as pivotal controls of the distribution 

of alternative stable states (Scheffer et al. 2001) of plant 

communities at a variety of spatial scales from herbaceous 

sea beds, to regional dichotomies of treeless and woody 

vegetation in the temperate zone (Warman and Moles 

2009, Odion et al. 2010, Knox and Clarke 2012, Wood and 

Bowman 2012), to savannahs and closed forests across 

the tropics (Hirota et al. 2011, Mayer and Khalyani 2011, 

Staver et al. 2011, Murphy and Bowman 2012). Identify-

ing whether vegetation communities exist as alternative 

stable states is crucial because of the non-linear dynam-

ics that dictate their past, present and future trajectories. 

Instead of gradual linear changes in response to gradual 

changes in climate, nutrient loading or habitat fragmen-

tation, systems maintained as alternative stable states 

are characterized by lags in response to climate or abrupt 

switches to a contrasting state, as the resilience afforded 

by positive feedbacks breaks down (Scheffer et al. 2001). 

At the treeline, forest and treeless alpine vegetation 

communities can be considered as alternative stable 

states when the two opposing vegetation types are main-

tained by strong feedbacks driven by interactions be-

tween forest canopy cover, gradients of temperature and 

resource availability and the frequency and intensity of 

local stress factors such as wind, snow, frost and fire (Fig. 

other ecotones (Bale et al. 2002, Cairns and Moen 2004).

A possible explanation for treeline changes is land use 

change (Bolli et al. 2007, Gehrig-Fasel et al. 2007, Macek 

et al. 2009, Chauchard et al. 2010). Most upward shift ac-

tivities were found to occur below the potential regional 

treeline (Gehrig-Fasel et al. 2007). Only 4% of the upward 

shifts were identified to rise above the potential regional 

treeline, thus indicating climate change. Land abandon-

ment was the most dominant driver for the establishment 

of new forest areas, even at the treeline ecotone.

SPECIES-SPECIFIC TRAITS

Reproduction 

Seedling establishment and subsequent growth are 

necessary for the formation of new forests at higher al-

titudes, and both appear to be particularly challenging 

for tree species in the upper treeline ecotone (Black and 

Bliss 1980, Daly and Shankman 1985, Butler et al. 1994, 

Cho 1994, Hättenschwiler and Smith 1999, Germino et 

al. 2002, Kullman 2002, Smith et al. 2003, 2009, Gworek 

et al. 2007, Batllori et al. 2009, Kullman 2010b) (Table 1 

and Fig. 2). Regeneration success determines whether the 

treeline shifts or remains static in response to environ-

mental changes. Seed development, dispersal, germina-

tion, and seedling establishment are all limited by cold 

temperatures at the treeline (Körner 1998, Hättenschwiler 

and Smith 1999, Danby and Hik 2007, Holtmeier and Broll 

2007, Dang et al. 2009). Some strategies such as extensive 

natural layering among Picea mariana (black spruce) 

stands at treelines in northern Quebec permit continued 

recruitment during prolonged cooling episodes (Payette 

et al. 1989). Many trees in these stands survive such epi-

sodes by undergoing extreme reductions in growth rates 

and shifts in growth form from upright to krummholz, 

although these morphological changes can also delay or 

moderate responses to subsequent warming. 

Life history traits

The life history traits of tree populations at treelines 

have been closely linked to differences amongst species in 

relation to the influence of low summer temperatures on 

growth rates, phenology, cover/density and development 

of trees (Motta and Nola 2001, Grace et al. 2002, Gamache 

and Payette 2004, Kullman 2007, Macek et al. 2009, Her-

tel and Schöling 2011, Xu et al. 2012, Anadon-Rosell et al. 

2014) (Table 1 and Fig. 2). Understanding the interaction 
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protection from exposure to high levels of solar radiation 

(Ball et al. 1997, Germino and Smith 1999, Bader 2007). 

The identification of positive feedbacks operating 

within treelines has important implications for their 

usefulness as barometers of climate and environmental 

change. These feedbacks ensure that an established for-

est can rejuvenate and persist even if the external climate 

deteriorates. Thus, treelines are not necessarily in equilib-

rium with climatic conditions and may exhibit a lagged 

response to climate change (Scheffer et al. 2001) (see 

zone of tension in Fig. 3). A further emergent property of 

alternative stable state ecosystems is abrupt shifts from 

one state to another (i.e., tree to alpine) once a threshold 

in external conditions is reached or due to a disturbance 

(Scheffer et al. 2001) (Fig. 3). To date, field observations 

of the temporal trends expected in systems operating as 

alternative stable states (i.e., lags and catastrophic shifts) 

are lacking for alpine treeline environments (and indeed, 

for most long-lived forest ecosystems), although simula-

tion modelling approaches have been used to explore the 

effects of positive feedbacks on the temporal dynamics at 

the treeline (Malanson 2001, Alftine and Malanson 2004, 

Bader et al. 2008). Definitive evidence for treelines ex-

hibiting the complex characteristics of alternative stable 

states is still nascent, but can be progressed though the 

adoption of the emerging research approaches undertak-

en in forest-treeless systems such as the spatial analyses 

of forests in tropical savannahs (Staver et al. 2011, Mur-

phy and Bowman 2012) and the elucidation of temporal 

trends in vegetation states identified from sediments in 

temperate forests (Jeffers et al. 2011, Fletcher et al. 2014). 

CONCLUSION

In general, treeline positions are the result of a combi-

nation of unfavorable conditions for tree regeneration, 

seedling establishment and tree growth (Table 1 and 

Figs. 2 and 3). The commonly accepted hypothesis is that 

growth at a treeline is limited by growing season tempera-

ture (Grabherr et al. 1994, Shi et al. 2006, Susiluoto et al. 

2007, Hoch and Körner 2009). This growth limitation hy-

pothesis is consistent with the correlation of tree growth 

with mid-summer temperatures, frequently observed at 

the treeline, and can be evoked to explain why the altitude 

of treelines is well correlated with July temperatures in the 

northern hemisphere (Körner 1998). The two factors de-

termining the treeline positions are regional and local fac-

tors and species-specific traits. These factors interact with 

and, in some cases, supersede the influence of climate to 

3). Through canopy cover, trees are able to modify en-

vironmental conditions to promote tree establishment 

and growth such that abrupt treeline boundaries are not 

related to patterns in substrate, topography or tempera-

ture, but are brought about by plant interactions alone 

(Wilson and Agnew 1992, Malanson et al. 2011). Field and 

modelling studies have shown that by modifying their 

microclimate, tree canopies can promote the perpetua-

tion of their community through a range of mechanisms 

including shielding of wind (Alftine and Malanson 2004, 

Holtmeier and Broll 2010), exclusion of fire (Bader et al. 

2008), moderation of snow pack and frost events (Wilson 

and Agnew 1992, Bekker 2005, Batllori et al. 2009), accu-

mulation of nutrients (Cairns 1999), or offering shade and 

Fig. 3.  Model of the combined effects of temperature/resource 
availability and local/regional stress factors (e.g., freezing temperatures, 
snow pack, wind or high solar radiation) on canopy cover at the treeline. 
In two alternative representations of the same model: (a) canopy cover 
is shown as a function of temperature and resource availability, and (b) 
canopy cover is shown as a function of local and regional stress factors. 
Alternative stable states of forest and treeless alpine vegetation exist 
under the same external environmental conditions (zone of tension: grey 
area) depending on the frequency and intensity of local and regional 
stress factors. Abrupt transitions from forest to alpine vegetation or vice 
versa can occur at threshold temperature/resource conditions or due to 
disturbance by stress factors. Adapted from Murphy and Bowman (2012) 
and Malanson et al. (2011).
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