DOI QR코드

DOI QR Code

등가정하중법을 이용한 텔레비전 포장재의 구조최적설계

Optimization of the Television Packing System Using Equivalent Static Loads

  • 투고 : 2014.09.01
  • 심사 : 2014.12.23
  • 발행 : 2015.03.01

초록

텔레비전의 운송 중 발생 가능한 낙하상황을 설정하고, 낙하충격으로부터 텔레비전을 보호할 수 있는 텔레비전 포장재의 최적설계를 수행하였다. 텔레비전 포장재의 최적설계는 등가정하중법을 이용하여 비선형동적응답 구조최적설계를 수행하였으며, 포장재의 최적설계 과정을 본 연구에서 제안하였다. 개념설계 단계에서 등가정하중법을 적용한 위상최적설계를 수행하였으며 상세설계 단계에서 가상모델을 사용한 응력등가정하중법을 이용하여 형상최적설계를 수행하였다. 응력등가정하중은 비선형동적응답 해석의 변위장뿐만 아니라 응력반응장과 동일한 선형해석반응장을 유발하는 선형정적하중이다. 즉, 비선형동적응답 해석에서의 응력반응장을 구조최적설계에서 제한조건을 설정할 수 있는 것이다. 실제 예제를 통해 등가정하중법을 적용한 최적설계 과정의 유용성을 검증하였다. 텔레비전 포장재 낙하 테스트는 LS-DYNA 를 사용하였으며 구조최적설계는 NASTRAN 을 사용하였다.

A nonlinear dynamic response structural optimization process is proposed for the television (TV) packing system that protects the damage from a drop situation using the equivalent static loads (ESLs). Topology optimization using ESLs is carried out for conceptual design, and shape optimization using stress ESLs for a virtual model is performed for detailed design. Stress ESLs are static loads that generate the same displacement as well as the stress fields of linear static analysis as those of nonlinear dynamic analysis. Thus, the response of nonlinear dynamic analysis can be utilized as a constraint in the linear static structural optimization. An actual example is solved to validate the process. The drop test of a television packaging system is analyzed by LS-DYNA, and NASTRAN is used for optimization.

키워드

참고문헌

  1. Kim, C. S., Bae, B. K. and Sung, Do. Y., 2010, "Drop Analysis of a Package and Cushion Performance of Drum Washing Machine," Trans. Korean Soc. Mech. Eng. A, Vol. 34, No. 11, pp. 1733-1740. https://doi.org/10.3795/KSME-A.2010.34.11.1733
  2. Kum, D. H., Kim, Won. Jin., Kim, S. D. and Park, S. H, 2004, "Optimal Design for Cushioning Package of a Heavy Electronic Product Using Mechanical Drop Analysis," Korean Soc. for Noise and Vibration Eng., Vol. 14, No. 2, pp.128-135. https://doi.org/10.5050/KSNVN.2004.14.2.128
  3. Park, G. J., 2007, Analytic Methods for Design Practice, Springer-Verlag, Germany.
  4. Choi, W. S. and Park, G. J., 1999, "Transformation of Dynamic Loads into Equivalent Static Loads Based on Model Analysis," International Journal for Numerical Methods in Engineering, Vol. 46, No. 1, pp. 29-43. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<29::AID-NME661>3.0.CO;2-D
  5. Choi, W. S. and Park, G. J., 2002, "Structural Optimization Using Equivalent Static Loads at All the Time Intervals," Computer Methods in Applied Mechanics and Engineering, Vol. 191, No. 19, pp. 2077-2094
  6. Park, K. J. and Park, G. J., 2005, "Structural Optimization for Non-Linear Behavior Using Equivalent Static Loads (I) Algorithm," Trans. Korean Soc. Mech. Eng. A, Vol. 29, No. 8, pp. 1051-1060. https://doi.org/10.3795/KSME-A.2005.29.8.1051
  7. Kim, Y. I. and Park, G. J., 2007, "Case Studies of Nonlinear Response Structural Optimization Using Equivalent Loads," Trans. Korean Soc. Mech. Eng. A, Vol. 31, No. 11, pp. 1059-1068. https://doi.org/10.3795/KSME-A.2007.31.11.1059
  8. Kang, B. S., Choi, W. S. and Park, G. J., 2001, "Structural Optimization under Equivalent Static Loads Transformed from dynamic Loads Based on Displacement," Computer & Structures, Vol. 79, No. 2, pp. 145-154. https://doi.org/10.1016/S0045-7949(00)00127-9
  9. Kim, Y. I. and Park, G. J., 2010, "Nonlinear Dynamic Response Structural Optimization Using Equivalent Static Loads," Computer Methods in Applied Mechanics and Engineering, Vol. 199, No. 9, pp. 660-676. https://doi.org/10.1016/j.cma.2009.10.014
  10. Shin, M. K., Park, K. J. and Park, G. J., 2007, "Optimization of Structures with Nonlinear Behavior Using Equivalent Loads," Computers Methods in Applied Mechanics and Engineering, Vol. 196, Issue 4-6, pp. 1154-1167. https://doi.org/10.1016/j.cma.2006.09.001
  11. Park, G. J. and Kang, B. S., 2003, "Mathematical Proof for Structural Optimization with Equivalent Static Loads Transformed from Dynamic Loads," Trans. Korean Soc. Mech. Eng. A, Vol. 27, No. 2, pp. 268-275. https://doi.org/10.3795/KSME-A.2003.27.2.268
  12. Park, G. J. and Kang, B. S., 2003, "Validation of Structural Optimization Algorithm Transformation Dynamic Loads into Equivalent Static Loads," Journal of Optimization Theory and Applications, Vol. 118, No. 1, pp. 191-200. https://doi.org/10.1023/A:1024799727258
  13. Bendsoe, M. P., 1989, "Optimal Shape Design as a Material Distribution Problem," Structural and Multidisciplinary Optimization, Vol. 1, No. 4, pp. 193-202 https://doi.org/10.1007/BF01650949
  14. Lee, H. A. and Park, G. J., 2012, "Topology Optimization for Structures With Nonlinear Behavior Using the Equivalent Static Loads Method," Journal of Mechanical Design, Vol. 134, No. 3.
  15. Lee, H. A., Zeshan, A. and Park, G. J., 2010, "Preliminary Study on Nonlinear Static Response Topology Optimization Using Equivalent Load," Trans. Korean Soc. Mech. Eng. A, Vol. 34, No. 12, pp. 1811-1820. https://doi.org/10.3795/KSME-A.2010.34.12.1811
  16. Jang, H. H., Jeong, S. B. and Park, G. J., 2012, "Shape Optimization of Metal Forming and Forging Products Using the Stress Equivalent Static Loads Calculated from a Virtual Model," Trans. Korean Soc. Mech. Eng. A, Vol. 36, No. 11, pp. 1361-1370. https://doi.org/10.3795/KSME-A.2012.36.11.1361
  17. Lee, J. J., Jung, U. J. and Park, G. J., 2013, "Shape Optimization of the Workpiece in the Forging Process Using Equivalent Static Loads," Finite Elements in Analysis and Design. Vol. 69, pp. 1-18. https://doi.org/10.1016/j.finel.2013.01.005
  18. LS-DYNA User's Manual Version 971, Livermore Software Technology Corporation, Livermore, California, USA, 2010.
  19. MSC NASTRAN 2012.2 User's Manual, MSC. Software, USA, 2012.