DOI QR코드

DOI QR Code

Lumped Track Modeling for Estimating Traction Force of Vecna BEAR Type Robot

Vecna BEAR 형 로봇의 견인력 추정을 위한 Lumped 궤도 모델링

  • Kim, Tae Yun (School of Mechanical Engineering, Busan Nat'l Univ.) ;
  • Jung, Samuel (School of Mechanical Engineering, Busan Nat'l Univ.) ;
  • Yoo, Wan Suk (School of Mechanical Engineering, Busan Nat'l Univ.)
  • Received : 2014.10.07
  • Accepted : 2015.01.02
  • Published : 2015.03.01

Abstract

Recently, Vecna BEAR type robot to save injured individuals from inaccessible areas has been developed to minimize the loss of life. Because this robot is driven on rough terrain, there is a risk of rollover and vibration, which could impact the injured. In order to guarantee its stability, an algorithm is required that can estimate the speed limits for various environments in real time. Therefore, a dynamic model for real-time analysis is needed for this algorithm. Because the tracks used as the driving component of Vecna BEAR type robot consist of many parts, it is impossible to analyze the multibody tracks in real time. Thus, a lumped track model that satisfies the requirements of a short computation time and adequate accuracy is required. This study performed lumped track modeling, and the traction force was verified using RecurDyn, which is a dynamic commercial program.

최근 전투에서 인명 손실을 최소화하기 위해 사람이 접근하기 어려운 지역에서 부상병을 구조해내는 로봇(Vecna Bear type robot)이 개발되고 있다. Vecna BEAR 형 로봇은 험한 지형을 주행하게 되므로 큰 진동 및 전복에 의해 부상자에게 충격을 가할 수 있다. 이러한 로봇의 안정성을 보장하기 위해서는 다양한 환경에 대해 주행 한계속도를 실시간으로 추정할 수 있는 알고리즘이 요구된다. 따라서 한계속 도추정 알고리즘을 수행하기 위하여 실시간 해석이 가능한 동역학 모델이 필요하다. Vecna BEAR 형 로봇의 구동부인 궤도는 실제로 많은 요소로 구성되어 있기 때문에 궤도의 다물체 동역학 모델에 의한 실시간 해석은 불가능하다. 그러므로 적은 해석량과 합당한 정확성을 만족하는 lumped 궤도 모델이 필요하다. 본 연구에서는 이러한 lumped 궤도 모델링을 수행하였고, 다물체 동역학 상용 프로그램인 RecurDyn 을 이용하여 견인력을 검증하였다.

Keywords

References

  1. Yi, K. C., 2009, "Driving Velocity Decision of a 6x6 Autonomous Vehicle Using Dynamic Analysis," M. S. Thesis, Busan National University, Busan, Korea.
  2. Jung, Y. S., 2011, "Development of Velocity Decision Algorithm for Autonomous Driving of Unmanned Ground Vehicle in Roughness Terrain," M. S. Thesis, Busan National University, Busan, Korea.
  3. Wills, B. M. D., 1963, "The Measurement of Soil Shear Strength and Deformation Moduli and Comparison of the Actual and Theoretical Performance of a Family of Rigid Tracks," J. of Agricultural Engineering Research, Vol. 8, No. 2, pp. 115-131.
  4. Bernstein, R., 1913, "Probleme zur Experimentellen Motopflug Mechanic, " Der Motorwagen, 9, pp. 199-206.
  5. Bekker, M. G., 1956, "Theory of Land Locomotion," University of Michigan Press, Michigan, USA.
  6. Bekker, M. G., 1969, "Introduction to Terrain Vehicle System, " University of Michigan Press, Michigan, USA.
  7. Park, W. Y., 1998, "Development of Tractive Performance Prediction Model for Flexible Tracked Vehicle," Ph. D. Dissertation, Sungkyunkwan university, Seoul, Korea.
  8. Janosi, Z. and Hanamoto, B., 1961, "The Analytical Determination of Drawbar Pull as a Function of Slip for Tracked Vehicles in Deformable Soils," Proc. of the 1st International Conference on the Mechanics of Soil Vehicle Systems, Edizioni Minerva Tecnica, Torino, Italy.
  9. McCullough, M. K., Haug, E. J., 1985, "Terra-Dynamics of High Mobility Track Vehicles," Technical Report, University of Iowa, Iowa, USA.
  10. AUTO JOURNAL, Journal of the Korean Society of Automotive Engineers, Vol. 31, No. 3, p. 25.
  11. Function Bay, "RecurDyn, Low-Mobility Tracked Vehicle Tutorial (Track_LM)."
  12. MSC Software, "ADAMS, Manual of Soft Soil Tire Model."

Cited by

  1. Effect of Horizontal Load on the Performance of Track Roller vol.40, pp.8, 2016, https://doi.org/10.3795/KSME-A.2016.40.8.743