DOI QR코드

DOI QR Code

A Review of Recent Developments in Buffalo Reproduction - A Review

  • Warriach, H.M. (University of Veterinary and Animal Sciences) ;
  • McGill, D.M. (EH Graham Centre for Agricultural Innovation, Charles Sturt University) ;
  • Bush, R.D. (Faculty of Veterinary Science, University of Sydney) ;
  • Wynn, P.C. (EH Graham Centre for Agricultural Innovation, Charles Sturt University) ;
  • Chohan, K.R. (Department of Pathology and Obstetrics and Gynecology, Upstate Medical University Syracuse)
  • Received : 2014.04.08
  • Accepted : 2014.08.28
  • Published : 2015.03.01

Abstract

The buffalo is an important livestock resource in several countries of South Asia and the Mediterranean regions. However, reproductive efficiency is compromised due to known problems of biological and management origins, such as lack of animal selection and poor nutrition. Under optimal conditions puberty is attained at 15 to 18 months in river buffalo, 21 to 24 months in swamp buffalo and is influenced by genotype, nutrition, management and climate. However, under field conditions these values deteriorate up to a significant extant. To improve reproductive efficiency, several protocols of oestrus and ovulation synchronization have been adopted from their use in commercial cattle production. These protocols yield encouraging pregnancy rates of (30% to 50%), which are comparable to those achieved in buffaloes bred at natural oestrus. The use of sexed semen in buffalo heifers also showed promising pregnancy rates (50%) when compared with conventional non-sexed semen. Assisted reproductive technologies have been transferred and adapted to buffalo but the efficiency of these technologies are low. However, these latest technologies offer the opportunity to accelerate the genetic gain in the buffalo industry after improving the technology and reducing its cost. Most buffaloes are kept under the small holder farming system in developing countries. Hence, future research should focus on simple, adoptable and impact-oriented approaches which identify the factors determining low fertility and oestrus behaviour in this species. Furthermore, role of kisspeptin needs to be explored in buffalo.

Keywords

References

  1. Baruselli, P. S., R. G. Mucciolo, J. A. Visintin, W. G. Viana, R. P. Arruda, and E. H. Madureira, C. A. Oliveira, and J. R. Molero-Filho. 1997. Ovarian follicular dynamics during the estrous cycle in buffalo (Bubalus bubalis). Theriogenology 47:1531-1547. https://doi.org/10.1016/S0093-691X(97)00159-3
  2. Berber, R. C. A., E. H. Madureira, and P. S. Baruselli. 2002. Comparison of two ovsynch protocols (GnRH vs. LH) for fixed timed insemination in buffalo (Bubalus bubalis). Theriogenology 57:1421-1430. https://doi.org/10.1016/S0093-691X(02)00639-8
  3. Borghese, A. 2005. In: Technical Series 67. Food and Agriculture Organization, Rome, Italy.
  4. Chohan, K. R., R. A. Chaudhry, J. Iqbal, and T. Rahil. 1992. Comparative efficiency of male and androgenized female teaser for oestrus detection in buffaloes. J. Appl. Anim. Res. 2:23-26. https://doi.org/10.1080/09712119.1992.9705927
  5. Chohan, K. R. 1998. Estrus synchronization with lower doses of $PGF2{\alpha}$ and subsequent fertility in subestrous buffalo. Theriogenology 50:1101-1108. https://doi.org/10.1016/S0093-691X(98)00211-8
  6. Danell, B. 1987. Oestrous Behavior, Ovarian Morphology and Cyclical Variation in Follicular System and Endocrine Pattern in Water Buffalo Heifers. PhD Thesis: Sveriges Lantbruks universitet, Uppsala, Sweden. pp. 54-94.
  7. De Rensis, F. and F. Lopez-Gatius. 2007. Protocols for synchronizing estrus and ovulation in buffalo (Bubalus bubalis): A review. Theriogenology 67:209-216. https://doi.org/10.1016/j.theriogenology.2006.09.039
  8. Drost, M., Jr. J. M. Wright, W. S. Cripe, and A. R. Richter. 1983. Embryo transfer in water buffalo (Bubalus bubalis). Theriogenology 20:579-84. https://doi.org/10.1016/0093-691X(83)90082-1
  9. Erickson, B. H. 1966. Development and senescence of the postnatal bovine ovary. J. Anim. Sci. 25:800-805.
  10. Gasparrini, B. 2002. In vitro embryo production in buffalo species: state of the art. Theriogenology 57:237-256. https://doi.org/10.1016/S0093-691X(01)00669-0
  11. Gaviraghi, A., R. Puglisi, D. Balduzzi, A. Severgnini, V. Bornaghi, G. Bongioni, A. Frana, L. M. Gandini, A. Lukaj, C. Bonacina, and A. Galli. 2013. Minimum number of spermatozoa per dose in Mediterranean Italian buffalo (Bubalus bubalis) using sexed frozen semen and conventional artificial insemination. Theriogenology 79:1171-1176. https://doi.org/10.1016/j.theriogenology.2013.02.014
  12. Gill, R. S., P. C. Gangwar, and D. S. Kooner. 1973. Studies on oestrous behaviour of buffaloes. Indian J. Anim. Sci. 43:472-475.
  13. Gordon, I. 1996. Controlled reproduction in cattle and buffaloes. CABI, Wallingford, UK. vol. 1. pp. 452.
  14. Jainudeen, M. R. 1977. Reproduction of Malaysian swamp buffalo (Bubalus bubalis). Proceeding of Ist Joint Conference on Health and production Australian and Local Cattle in South East Asia, Ministry of Agriculture, Malaysia, Bull. No. 146, pp. 162-169.
  15. Jainudeen, M. R. and E. S. E. Hafez. 1993. Cattle and buffalo. In: Reproduction in Farm Animals (Ed. E. S. E. Hafez), 6th ed. Lea and Febiger, Philadelphia, PA, USA. pp. 315-329.
  16. Kaur, H. and S. P. Arora. 1982. Influence of level of nutrition and season on the oestrous cycle rhythm and on fertility in buffaloes. Trop. Agric. (Trinidad) 59:274-278.
  17. Lu, Y. Q., X. W. Liang, M. Zhang, W. L. Wang, Y. Kitiyanant, S. S. Lu, B. Meng, and K. H. Lu. 2007. Birth of twins after in vitro fertilization with flow-cytometric sorted buffalo (Bubalus bubalis) sperm. Anim. Reprod. Sci. 100:192-196. https://doi.org/10.1016/j.anireprosci.2006.09.019
  18. Manjunatha, B. M., J. P. Ravindra, P. S. P. Gupta, M. Devaraj, and S. Nandi. 2009. Effect of breeding season on in vivo oocyte recovery and embryo production in non-descriptive Indian river buffaloes (Bubalus bubalis). Anim. Reprod. Sci. 111: 376-383. https://doi.org/10.1016/j.anireprosci.2008.03.003
  19. Misra, A. K., B. V. Joshi, P. L. Agrawala, R. Kasiraj, S. Sivaiah, N. S. Rangareddi, and M. U. Siddiqui. 1990. Multiple ovulation and embryo transfer in Indian buffalo (Bubalus bubalis). Theriogenology 33:1131-1141. https://doi.org/10.1016/0093-691X(90)90073-3
  20. Nanda, A. S., P. S. Brar, and S. Prabhakar. 2003. Enhancing reproductive performance in dairy buffalo: major constraints and achievements. Reproduction 61 (Suppl.):27-36.
  21. Naseer, Z., E. Ahmad, J. Singh, and N. Ahmad. 2001. Fertility following CIDR based synchronization regimens in anoestrous Nili-Ravi buffaloes. Reprod. Domest. Anim. 46:814-817.
  22. Neglia, G., B. Gasparrini, R. Di Palo, C. De Rosa, L. Zicarelli, and G. Campanile. 2003. Comparison of pregnancy rates with two estrus synchronization protocols in Italian Mediterranean Buffalo cows. Theriogenology 60:125-133. https://doi.org/10.1016/S0093-691X(02)01328-6
  23. Okamura, H., T. Yamamura, and Y. Wakabayashi. 2013. Kisspeptin as a master player in the central control of reproduction in mammals: An overview of kisspeptin research in domestic animals. Anim. Sci. J. 84:369-381. https://doi.org/10.1111/asj.12056
  24. Palta, P. and M. S. Chauhan. 1998. Laboratory production of buffalo (Bubalus bubalis) embryos. Reprod. Fertil. Dev. 10: 379-392. https://doi.org/10.1071/RD98085
  25. Paul, V. and B. S. Prakash. 2005. Efficacy of the ovsynch protocol for synchronization of ovulation and fixed-time artificial insemination in Murrah buffaloes (Bubalus bubalis). Theriogenology 64:1049-1060. https://doi.org/10.1016/j.theriogenology.2005.02.004
  26. Perera, B. M. A. O. 1987. A review of experiences with oestrous synchronization in buffaloes in Sri Lanka. Buff. J. 1(Suppl.):105-114.
  27. Qureshi, M. S., S. Khan, and N. Ahmad. 2007. Pregnancy depresses milk yield in dairy buffaloes. Italian J. Anim. Sci. 6: (Suppl. 2):1290-1293.
  28. Rao, A. R. and C. Rao Ch. 1983. Synchronization of oestrus and fertility in buffaloes with a progesterone releasing intravaginal device. Vet. Rec. 113:623-624.
  29. Roy, K. S. and B. S. Prakash. 2009. Plasma progesterone, oestradiol-$17{\beta}$ and total oestrogen profiles in relation to oestrous behaviour during induced ovulation in Murrah buffalo heifers. J. Anim. Physiol. Anim. Nutr. 93:486-495. https://doi.org/10.1111/j.1439-0396.2008.00830.x
  30. Seidel, Jr. G. E., J. L. Schenk, L. A. Herickoff, S. P. Doyle, Z. Brink, R. D. Green, and D. G. Cran. 1999. Insemination of heifers with sexed sperm. Theriogenology 52:1407-1420. https://doi.org/10.1016/S0093-691X(99)00226-5
  31. Seren, E., A. Parmeggiani, and G. Campanile. 1995. The control of ovulation in Italian buffalo. In: Proc. of the Symposium Reproduction and Animal Breeding: Advances and Strategy, Milan, Italy. pp. 265-275.
  32. Singh, J., A. S. Nanda, and G. P. Adams. 2000. The reproductive pattern and efficiency of female buffaloes. Anim. Reprod. Sci. 60-61:593-604. https://doi.org/10.1016/S0378-4320(00)00109-3
  33. Taneja, M., A. Ali, and G. Singh. 1996. Ovarian follicular dynamics in water buffalo. Theriogenology 46:121-130. https://doi.org/10.1016/0093-691X(96)00147-1
  34. Trimberger, G. W. 1948. Breeding Efficiency in Dairy Cattle from Artificial Insemination at Various Intervals before and after Ovulation. Nebraska Agriculture Experimental Station. 153:1.
  35. Usmani, R. H., R. A. Dailey, and E. K. Inskeep. 1990. Effects of limited suckling and varying prepartum nutrition on postpartum reproductive traits of milked buffaloes. J. Dairy Sci. 73:1564-1570. https://doi.org/10.3168/jds.S0022-0302(90)78826-1
  36. Yang, B., X. L. Q. Zeng, J. Qin, and C. Yang. 2007. Dairy buffalo breeding in countryside of China. Italian J. Anim. Sci. 6: (Suppl. 2):25-29.
  37. Warriach, H. M. and N. Ahmad. 2007. Follicular waves during the oestrous cycle in Nili-Ravi buffaloes undergoing spontaneous and PGF2alpha-induced luteolysis. Anim. Reprod. Sci. 101: 332-337. https://doi.org/10.1016/j.anireprosci.2007.01.013
  38. Warriach, H. M., D. McGill, R. D. Bush, and P. C. Wynn. 2012. Production and reproductive performance of Nili-Ravi buffalo under field conditions of Pakistan. J. Anim. Plant Sci. (Suppl. 3):121-124.
  39. Warriach, H. M., A. A. Channa, and N. Ahmad. 2008. Effect of oestrus synchronization methods on oestrus behaviour, timing of ovulation and pregnancy rate during the breeding and low breeding seasons in Nili-Ravi buffaloes. Anim. Reprod. Sci. 107:62-67. https://doi.org/10.1016/j.anireprosci.2007.06.007

Cited by

  1. Effect of glutamine supplementation and replacement of tris-egg yolk based extender with defatted cow milk on spermatozoa quality after equilibration and thawing vol.8, pp.8, 2015, https://doi.org/10.14202/vetworld.2015.1027-1031
  2. De Novo Transcriptome Assembly of the Chinese Swamp Buffalo by RNA Sequencing and SSR Marker Discovery vol.11, pp.1, 2016, https://doi.org/10.1371/journal.pone.0147132
  3. Spermatogenesis-associated proteins at different developmental stages of buffalo testicular seminiferous tubules identified by comparative proteomic analysis vol.16, pp.14, 2016, https://doi.org/10.1002/pmic.201500547
  4. Differential Expression of Newly Identified Long Intergenic Non-Coding RNAs in Buffalo Oocytes Indicating Their Possible Role in Maturation and Embryonic Development vol.118, pp.7, 2017, https://doi.org/10.1002/jcb.25828
  5. The use of wastewater in livestock production and its socioeconomic and welfare implications vol.24, pp.21, 2017, https://doi.org/10.1007/s11356-017-9263-3
  6. Genome-wide association studies to identify quantitative trait loci affecting milk production traits in water buffalo pp.00220302, 2017, https://doi.org/10.3168/jds.2017-13246
  7. ) pp.09366768, 2017, https://doi.org/10.1111/rda.13051
  8. Genomic differentiation between swamp and river buffalo using a cattle high-density single nucleotide polymorphisms panel pp.1751-732X, 2017, https://doi.org/10.1017/S1751731117001719
  9. Current Status of animal biotechnology and option for improvement of animal reproduction in Asia vol.9, pp.10, 2018, https://doi.org/10.5897/IJLP2018.0481
  10. Comparative mRNA and miRNA expression in European mouflon (Ovis musimon) and sheep (Ovis aries) provides novel insights into the genetic mechanisms for female reproductive success pp.1365-2540, 2018, https://doi.org/10.1038/s41437-018-0090-1
  11. Molecular Cloning and Characterization of Mx2 for Early Pregnancy Diagnosis in Bubalus bubalis pp.2250-1746, 2018, https://doi.org/10.1007/s40011-018-0993-x
  12. Maturation of buffalo oocytes in vitro with acetyl-L-carnitine improves cryotolerance due to changes in mitochondrial function and the membrane lipid profile vol.31, pp.2, 2019, https://doi.org/10.1071/RD18102
  13. Repeat breeding: Incidence, risk factors and diagnosis in buffaloes vol.5, pp.2, 2015, https://doi.org/10.1016/j.apjr.2016.01.001
  14. Comparative pharmacokinetics of ceftiofur hydrochloride and ceftiofur sodium after administration to water buffalo (Bubalus bubalis) vol.77, pp.6, 2016, https://doi.org/10.2460/ajvr.77.6.646
  15. Carnitine Precursors and Short-Chain Acylcarnitines in Water Buffalo Milk vol.66, pp.30, 2018, https://doi.org/10.1021/acs.jafc.8b02963
  16. Genome-wide association study applied to type traits related to milk yield in water buffaloes (Bubalus bubalis) vol.103, pp.2, 2015, https://doi.org/10.3168/jds.2019-16499
  17. Corpus Luteum Color Doppler Ultrasound and Pregnancy Outcome in Buffalo during the Transitional Period vol.10, pp.7, 2015, https://doi.org/10.3390/ani10071181
  18. A proof-of-concept of lateral flow based luteinizing hormone detection in urine for ovulation prediction in buffaloes vol.12, pp.26, 2020, https://doi.org/10.1039/d0ay00787k
  19. Spermatozoa produced during winter are superior in terms of phenotypic characteristics and oviduct explants binding ability in the water buffalo (Bubalus bubalis) vol.55, pp.11, 2015, https://doi.org/10.1111/rda.13824
  20. Novel targets identified by integrated proteomic and phosphoproteomic analysis in spermatogenesis of swamp buffalo ( Bubalus bubalis ) vol.10, pp.1, 2015, https://doi.org/10.1038/s41598-020-72353-4
  21. Genome-wide identification of Diacylglycerol Acyltransferases (DGAT) family genes influencing Milk production in Buffalo vol.21, pp.1, 2015, https://doi.org/10.1186/s12863-020-0832-y
  22. Transcriptomic Profiling of Buffalo Spermatozoa Reveals Dysregulation of Functionally Relevant mRNAs in Low-Fertile Bulls vol.7, pp.None, 2015, https://doi.org/10.3389/fvets.2020.609518
  23. Whole-Genome Sequencing and Characterization of Buffalo Genetic Resources: Recent Advances and Future Challenges vol.11, pp.3, 2015, https://doi.org/10.3390/ani11030904
  24. Reproductive performance of female swamp buffalo in West Sumatra vol.748, pp.1, 2015, https://doi.org/10.1088/1755-1315/748/1/012025
  25. Signal transducer and activator of transcription 1 gene polymorphism in Indonesian river buffalo vol.782, pp.2, 2015, https://doi.org/10.1088/1755-1315/782/2/022087
  26. The Use of Draught Animals in Rural Labour vol.11, pp.9, 2021, https://doi.org/10.3390/ani11092683
  27. Identification, Molecular Characterization, and Tissue Expression Profiles of Three Smad Genes from Water Buffalo (Bubalus bubalis) vol.12, pp.10, 2015, https://doi.org/10.3390/genes12101536
  28. Effect of exogenous administration of oxytocin on postpartum follicular dynamics, oestrous rate and ovulation in Nili‐Ravi buffaloes vol.56, pp.11, 2021, https://doi.org/10.1111/rda.14001
  29. Transcriptional profiling of buffalo mammary gland with different milk fat contents vol.802, pp.None, 2015, https://doi.org/10.1016/j.gene.2021.145864