DOI QR코드

DOI QR Code

Effect of Dietary Marine Microalgae (Schizochytrium) Powder on Egg Production, Blood Lipid Profiles, Egg Quality, and Fatty Acid Composition of Egg Yolk in Layers

  • Park, J.H. (Department of Animal Resource and Science, Dankook University) ;
  • Upadhaya, S.D. (Department of Animal Resource and Science, Dankook University) ;
  • Kim, I.H. (Department of Animal Resource and Science, Dankook University)
  • Received : 2014.06.25
  • Accepted : 2014.09.13
  • Published : 2015.03.01

Abstract

Two hundred and sixteen Institut de S$\acute{e}$lection Animale (ISA) brown layers (40 wks of age) were studied for 6 wks to examine the effect of microalgae powder (MAP) on egg production, egg quality, blood lipid profile, and fatty acid concentration of egg yolk. Dietary treatments were as follows: i) CON (basal diet), ii) 0.5% MAP (CON+0.5% Schizochytrium powder), and iii) 1.0% MAP (CON+1.0% Schizochytrium powder). From 44 to 46 wks, egg production was higher in 1.0% MAP treatment than in control treatment (linear, p = 0.034); however, there was no difference on the egg production from 40 to 43 wks (p>0.05). Serum triglyceride and total cholesterol were significantly reduced in the groups fed with MAP, compared to those in groups fed with control diets (Quadratic, p = 0.034 and p = 0.039, respectively). Inclusion of 0.5% MAP in the diet of layers improved egg yolk color, compared with hens fed with basal diet at 46 wks (quadratic, p = 0.044). Eggshell thickness was linearly increased in MAP-fed treatments at 46th wk (p<0.05). Concentration of yolk docosahexaenoic acid (DHA; C22:6n-3) was increased in treatment groups fed with MAP (linear, p<0.05). The n-6 fatty acids, n-6/n-3 fatty acid, and unsaturated fatty acid/saturated fatty acid were decreased in treatment groups fed with MAP (linear, p<0.05). These results suggest that MAP improved the egg production and egg quality, and may affect serum lipid metabolites in the layers. In addition, MAP increases yolk DHA levels, and deceases n-6/n-3 fatty acid ratio.

Keywords

References

  1. Aki, T., K. Hachida, M. Yoshinaga, Y. Katai, T. Yamasaki, S. Kawamoto, T. Kakizono, T. Yamaoka, S. Shigeta, O. Suzuki, and K. Ono. 2003. Thraustochytrid as a potential source of carotenoids. J. Am. Oil. Chem. Soc. 80:789-794. https://doi.org/10.1007/s11746-003-0773-2
  2. Ara, J., V. Sultana, R. Qasim, and V. U. Ahmad. 2002. Hypolipidaemic activity of seaweed from Karachi coast. Phytother. Res.16:479-483. https://doi.org/10.1002/ptr.909
  3. Becker, W. 2004. Microalgae in human and animal nutrition. In Handbook of Microalgal Culture: Biotechnology and Applied Phycology (Ed. A. Richmond). Blackwell, Oxford, UK. pp. 312-351.
  4. Chen, J., Y. Jiang, K. Y. Ma, F. Chen, and Z. Y. Chen. 2011. Microalga decreases plasma cholesterol by down-regulation of intestinal NPC1L1, hepatic LDL receptor, and HMG-CoA reductase. J. Agric. Food Chem. 59:6790-6797. https://doi.org/10.1021/jf200757h
  5. Chin, H. J., T. F. Shen, H. P. Su, and S. T. Ding. 2006. Schizochytrium limacinum SR-21 as a source of docosahexaenoic acid: optimal growth and use as a dietary supplement for laying hens. Aust. J. Agric. Res. 57:13-20. https://doi.org/10.1071/AR05099
  6. Dvir, I., A. H. Stark, R. Chayoth, Z. Madar, and S. M. Arad. 2009. Hypocholesterolemic effects of nutraceuticals produced from the red microalga Porphyridium sp. in rats. Nutrients 1:156-167. https://doi.org/10.3390/nu1020156
  7. Gatrell, S., K. Lum, J. Kim, and X. G. Lei. 2014. Nonruminant Nutrition Symposium: Potential of defatted microalgae from the biofuel industry as an ingredient to replace corn and soybean meal in swine and poultry diets. J. Anim. Sci. 92:1306-1314. https://doi.org/10.2527/jas.2013-7250
  8. Gerster, H. 1998. Can adults adequately convert alpha-linolenic acid (18:3n-3) to eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3)? Int. J. Vitam. Nutr. Res. 68:159-173.
  9. Hargis, P. S., M. E. Van Elswyk, and B. M. Hargis. 1991. Dietary modification of yolk lipid with menhaden oil. Poult. Sci. 70:874-883. https://doi.org/10.3382/ps.0700874
  10. Hata, Y., K. Nakajima, J. Uchida, H. Hidaka, and T. Nakano. 2002. Clinical effects of brown seaweed Undaria pinnatifida (wakame) on blood pressure in hypertensive subjects. J. Clin. Biochem. Nutr. 30:43-53.
  11. Herber, S. M. and M. E. Van Elswyk. 1996. Dietary marine algae promotes efficient deposition of n-3 fatty acids for the production of enriched shell eggs. Poult. Sci. 75:1501-1507. https://doi.org/10.3382/ps.0751501
  12. Herber, S. M. and M. E. Van Elswyk. 1998. Dietary marine algae maintains egg consumer acceptability while enhancing yolk color. Poult. Sci. 77:493-496. https://doi.org/10.1093/ps/77.3.493
  13. Hibbeln, J. R., L. R. G. Nieminen, T. L. Blasbalg, J. A. Riggs, and W. E. M. Lands. 2006. Healthy intakes of n-3 and n-6 fatty acids: Estimations considering worldwide diversity. Am. J. Clin. Nutr. 83:1483S-1493S.
  14. Hirahashi, T., M. Matsumoto, K. Hazeki, Y. Saeki, M. Ui, and T. Seya. 2002. Activation of the human innate immune system by Spirulina: augmentation of interferon production and NK cytotoxicity by oral administration of hot water extract of Spirulina platensis. Int. Immunopharmacol. 2:423-434. https://doi.org/10.1016/S1567-5769(01)00166-7
  15. Holub, B. J. 2009. Docosahexaenoic acid (DHA) and cardiovascular disease risk factors. Prostaglandins Leukot. Essent. Fatty Acids 81:199-204. https://doi.org/10.1016/j.plefa.2009.05.016
  16. Huang, Z. B., R. G. Ackman, W. M. N. Ratnayake, and F. G. Proudfoot. 1990. Effect of dietary fish oil on n-3 fatty acid levels in chicken eggs and thigh flesh. J. Agric. Food Chem. 38:743-747. https://doi.org/10.1021/jf00093a034
  17. Janczyk, P., B. Halle, and B. Souffrant. 2009. Microbial community composition of the crop and ceca contents of laying hens fed diets supplemented with Chlorella vulgaris. Poult. Sci. 88:2324-2332. https://doi.org/10.3382/ps.2009-00250
  18. Jimenez-Escrig, A., I. Jimenez-Jimenez, R. Pulido, and F. Saura-Calixto. 2001. Antioxidant activity of fresh and processed edible seaweeds. J. Sci. Food Agric. 81:530-534. https://doi.org/10.1002/jsfa.842
  19. Kim, Y. J., K. W. Lee, S. Lee, H. Kim, and H. J. Lee. 2003. The production of high-purity conjugated linoleic acid (CLA) using two-step urea-inclusion crystallization and hydrophilic arginine-CLA complex. J. Food Sci. 68:1948-1951. https://doi.org/10.1111/j.1365-2621.2003.tb06999.x
  20. Kotrbacek, V., M. Skrivan, J. Kopecky, O. Penkava, P. Hudeckova, I. Uhrikova, and J. Doubek. 2013. Retention of carotenoids in egg yolks of laying hens supplemented with heterotrophic Chlorella. Czech J. Anim. Sci. 58:193-200.
  21. Lahaye, M. and D. Jegou. 1993. Chemical and physical-chemical characteristics of dietary fibers from Ulva lactuca (L.) Thuret and Enteromorpha compressa (L.) Grev. J. Appl. Physiol. 5:195-200.
  22. Lemahieu, C., C. Bruneel, R. Termote-Verhalle, K. Muylaert, J. Buyse, and I. Foubert. 2013. Impact of feed supplementation with different omega-3 rich microalgae species on enrichment of eggs of laying hens. Food Chem. 14:4051-4059.
  23. Lum, K. K., J. Kim, and X. G. Lei. 2013. Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. J. Anim. Sci. Biotechnol. 4:53. https://doi.org/10.1186/2049-1891-4-53
  24. Mazalli, M. R., D. E. Faria, D. Salvador, and D. T. Ito. 2004. A Comparison of the feeding value of different sources of fats for laying hens: 1. Performance characteristics. J. Appl. Poult. Res. 13:274-279. https://doi.org/10.1093/japr/13.2.274
  25. NRC. 1994. Nutrient Requirements of Poultry. 9th ed, National Academy Press. Washington, DC, USA.
  26. Sardi, L., G. Martelli, L. Lambertini, P. Parisini, and A. Mordenti. 2006. Effects of a dietary supplement of DHA-rich marine algae on Italian heavy pig production parameters. Livest. Sci. 103:95-103. https://doi.org/10.1016/j.livsci.2006.01.009
  27. SAS. 2002. SAS User's Guide: Statistics, Version 9.0. SAS Inst. Inc., Cary, NC, USA.
  28. Shin, D., G. Kakani, A. Karimi, Y. M. Cho, S. W. Kim, Y. G. Ko, K. S. Shim, and J. H. Park. 2011. Influence of dietary conjugated linoleic acid and its combination with flaxseed oil or fish oil on saturated fatty acid and n-3 to n-6 fatty acid ratio in broiler chicken meat. Asian Australas. J. Anim. Sci. 24:1249-1255. https://doi.org/10.5713/ajas.2011.11109
  29. Simopoulos, A. P. 2003. Importance of the ratio of omega-6/omega-3 essential fatty acids: Evolutionary aspects. World Rev. Nutr. Diet. 92:171-174.
  30. Spolaore, P., C. Joannis-Cassan, E. Duran, and A. Isambert. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101:87-96. https://doi.org/10.1263/jbb.101.87
  31. Stamey, J. A., D. M. Shepherd, M. J. de Veth, and B. A. Corl. 2012. Use of algae or algal oil rich in n-3 fatty acids as a feed supplement for dairy cattle. J. Dairy Sci. 95:5269-5275. https://doi.org/10.3168/jds.2012-5412
  32. Stein, J. H., C. M. Carlsson, K. Papcke-Benson, J. A. Einerson, P. E. McBride, and D. A. Wiebe. 2002. Inaccuracy of lipid measurements with the portable Cholestech L.D.X analyzer in patients with hypercholesterolemia. Clin. Chem. 48:284-290.
  33. Trentacoste, E. M., R. P. Shrestha, S. R. Smith, C. Gle, A. C. Hartmann, M. Hildebrand, and W. H. Gerwick. 2013. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc. Natl. Acad. Sci. 110:19748-19753. https://doi.org/10.1073/pnas.1309299110
  34. Werman, M. J., A. Sukenik, and S. Mokady. 2003. Effects of the marine unicellular alga Nannochloropsis sp. to reduce the plasma and liver cholesterol levels in male rats fed on diets with cholesterol. Biosci. Biotechnol. Biochem. 67:2266-2268. https://doi.org/10.1271/bbb.67.2266
  35. Zheng, L., S. T. Oh, J. Y. Jeon, B. H. Moon, H. S. Kwon, S. U. Lim, B. K. An, and C. W. Kang. 2012. The dietary effects of fermented Chlorella vulgaris (CBT$^{(R)}$ ) on production performance, liver lipids and intestinal microflora in laying hens. Asian Australas. J. Anim. Sci. 25:261-266.

Cited by

  1. Application of microalgae biomass in poultry nutrition vol.71, pp.04, 2015, https://doi.org/10.1017/S0043933915002457
  2. Effects of simultaneous supplementation of laying hens with α-linolenic acid and eicosapentaenoic acid/docosahexaenoic acid resources on egg quality and n-3 fatty acid profile vol.30, pp.7, 2017, https://doi.org/10.5713/ajas.15.0850
  3. Bacterial Long-Chain Polyunsaturated Fatty Acids: Their Biosynthetic Genes, Functions, and Practical Use vol.14, pp.5, 2016, https://doi.org/10.3390/md14050094
  4. Influence of supplementing diet with microalgae (Schizochytrium limacinum)on growth and metabolism in lambs during the summer vol.41, pp.13036181, 2017, https://doi.org/10.3906/vet-1606-65
  5. Prospects on the Use of Schizochytrium sp. to Develop Oral Vaccines vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.02506
  6. Nutritional significance and health benefits of designer eggs vol.74, pp.02, 2018, https://doi.org/10.1017/S0043933918000041
  7. Ulvan extracted from green seaweeds as new natural additives in diets for laying hens vol.30, pp.3, 2018, https://doi.org/10.1007/s10811-017-1365-2
  8. Applications of microalgal paste and powder as food and feed: An update using text mining tool vol.7, pp.4, 2015, https://doi.org/10.1016/j.bjbas.2018.10.004
  9. The Golden Egg: Nutritional Value, Bioactivities, and Emerging Benefits for Human Health vol.11, pp.3, 2019, https://doi.org/10.3390/nu11030684
  10. Spirulina platensis in Japanese quail feeding alters fatty acid profiles and improves egg quality: Benefits to consumers vol.43, pp.7, 2019, https://doi.org/10.1111/jfbc.12860
  11. Omega-3 and Omega-6 Fatty Acids in Poultry Nutrition: Effect on Production Performance and Health vol.9, pp.8, 2019, https://doi.org/10.3390/ani9080573
  12. First step of non‐fish meal, non‐fish oil diet development for red seabream, (Pagrus major), with plant protein sources and microalgae Schizochytrium sp vol.50, pp.9, 2015, https://doi.org/10.1111/are.14199
  13. Arthrospira Platensis (Spirulina) Supplementation on Laying Hens’ Performance: Eggs Physical, Chemical, and Sensorial Qualities vol.8, pp.9, 2015, https://doi.org/10.3390/foods8090386
  14. Heterotrophic Aurantiochytrium sp. supplementation to layer diets sustainably increases the omega-3 concentration of eggs vol.60, pp.5, 2015, https://doi.org/10.1080/00071668.2019.1622079
  15. Non‐fish meal, non‐fish oil diet development for red sea bream, Pagrus major, with plant protein and graded levels of Schizochytrium sp.: Effect on growth and fatty acid composition vol.26, pp.4, 2015, https://doi.org/10.1111/anu.13074
  16. Effect of Sodium Selenite, Selenium Yeast, and Bacterial Enriched Protein on Chicken Egg Yolk Color, Antioxidant Profiles, and Oxidative Stability vol.10, pp.4, 2015, https://doi.org/10.3390/foods10040871
  17. Effect of Oils in Feed on the Production Performance and Egg Quality of Laying Hens vol.11, pp.12, 2015, https://doi.org/10.3390/ani11123482