DOI QR코드

DOI QR Code

Studies on Intramuscular Fat Percentage in Live Swine Using Real-time Ultrasound to Determine Pork Quality

  • Jung, Jong-Hyun (Department of Animal Biotechnology, Chonbuk National University) ;
  • Shim, Kwan-Seob (Department of Animal Biotechnology, Chonbuk National University) ;
  • Na, Chong-Sam (Department of Animal Biotechnology, Chonbuk National University) ;
  • Choe, Ho-Sung (Department of Animal Biotechnology, Chonbuk National University)
  • Received : 2014.12.08
  • Accepted : 2015.02.04
  • Published : 2015.03.01

Abstract

In the modern pork industry, selection of high intramuscular fat (IMF) in pigs is necessary to improve pork quality. Ultrasound has been used previously to predict subcutaneous fat thickness and IMF in the longissimus muscles of line pigs and Real-time ultrasound has also been reported as a reliable method for estimating IMF in live pigs. So we estimate the correlation between meat quality traits and IMF percentage to investigate the possibility of utilizing real-time ultrasound technology for predicting IMF percentage in line pigs to improve pork quality. The genetic and phenotypic correlations for chemical intramuscular fat (CIMF) and ultrasound intramuscular fat (UIMF) were estimated to be 0.75 and 0.76, respectively. These results suggest that genetic factors strongly influence meat quality. The genetic and phenotypic correlation between UIMF and CIMF were 0.75, 0.76, respectively. The heritability of UIMF and CIMF were 0.48 and 0.50, respectively. So we concluded that CIMF can be replaced with UIMF and Ultrasound machines can be used to test IMF in live swine. In future, UIMF can be utilized to improve pork quality as an alternative to CIMF.

Keywords

References

  1. Albrecht, E., J. Wegner, and K. Ender. 1996. A new technique for objective evaluation of marbling in beef. Fleischwirtschaft 76:1145-1148.
  2. Barton-Gade, P. A. 1990. Pork quality in genetic improvement programmes - the Danish experience. Proceeding of the National Swine Improvement Federation Annual Meeting. Des Moines, IA, USA.
  3. Basset, O., B. Buquet, S. Abouelkaram, P. Delachartre, and J. Culioli. 2000. Application of texture image analysis for the classification of bovine meat. Food Chem. 69:437-445. https://doi.org/10.1016/S0308-8146(00)00057-1
  4. Bligh, E. G. and W. J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 3:911-917.
  5. Berger, P. J., L. L. Christian, C. F. Louis, and J. R. Mickelson. 1994. Estimation of genetic parameters for growth, muscle quality, and nutritional content of meat products for centrally tested purebred market hogs. National Pork Production Council 1994, Des Moines, IA, USA. Research Investment Report pp. 51-63.
  6. Brewer, M. S., L. G. Zhu, and F. K. McKeith. 2001. Marbling effects on quality characteristics of pork loin chops: Consumer purchase intent, visual and sensory characteristics. Meat Sci. 59:153-163. https://doi.org/10.1016/S0309-1740(01)00065-1
  7. Cross . H. R. and K. E. Belk. 1994. Objective measurements of carcass and meat quality. Meat Sci. 36:191-202. https://doi.org/10.1016/0309-1740(94)90041-8
  8. DeVol, D. L., F. K. McKeith, P. J. Bechtel, J. Novakofski, R. D. Shanks, and T. R. Carr. 1988. Variation in composition and palatability traits and relationships between muscle characteristics and palatability in a random sample of pork carcasses. J. Anim. Sci. 66:385-395.
  9. Edwards . J. W., R. C. Cannell., R. P. Garrett., J. W. Savell, H. R. Cross, and M. T . Longnescker. 1989. Using ultrasound, linear measurements and live fat thickness estimates to determine the carcass composition of market lambs. J. Anim. Sci. 67:3322-3330.
  10. Forrest. J. C., C. H. Kure., M. W. Orecutt., A. P. Schinkel., J. R. Stouffer., and M. D. Judge. 1989. A review of potential new methods of on-line pork carcass evaluation. J. Anim. Sci. 67:2164-2170.
  11. Harvey, W. R. 1979. Least Squares analysis of data with unequal subclass numbers. Report ARS H-4, USDA, ARS-H-4, SEA, Washington, DC, USA.
  12. Hovenier, R., E. Kanis, T. H. van Asseldonk, and N. G. Westerink. 1992. Genetic parameters of pig meat quality traits in a halothane negative population. Livest. Prod. Sci. 32:309-321. https://doi.org/10.1016/0301-6226(92)90002-L
  13. Hwang, I. H., C. E. Devine, and D. L. Hopkins. 2003. The biochemical and physical effects of electrical stimulation on beef and sheep meat tenderness. Meat Sci. 65:677-691. https://doi.org/10.1016/S0309-1740(02)00271-1
  14. Joo, S. T., R. G. Kauffmann, B. C. Kim, and G. B. Park. 1999. The relationship of sarcoplasmic and myofibrillar protein solubility to colour and water-holding capacity in porcine longissimus muscle. Meat Sci. 52:291-297. https://doi.org/10.1016/S0309-1740(99)00005-4
  15. Larzul, C., L. Lefaucheur, P. Ecolan, J. Gogue, A. Talmant, P. Sellier, P. Le Roy, and G. Monin. 1997. Phenotypic and genetic parameters for longissimus muscle fiber characteristics in relation to growth, carcass, and meat quality traits in Large White pigs. J. Anim. Sci. 75:3126-3137.
  16. Monin, G. and P. Sellier. 1985. Pork of low technological quality with a normal rate of muscle pH fall in the immediate postmortem period: The case of the Hampshire breed. Meat Sci. 13:49-63. https://doi.org/10.1016/S0309-1740(85)80004-8
  17. Meyer, K. 1991. Estimation of variance components for Individual Animal Models II. Multivariate analyses. Genet. Sel. Evol. 23:67-83. https://doi.org/10.1186/1297-9686-23-1-67
  18. Newcom, D. W., T. J. Baas, and R. N. Goodwin. 2003. Relationship between intramuscular fat percentage predicted from real-time ultrasound and meat quality traits in pigs. J. Anim. Sci. 81(Suppl. 2):35. (Abstr.)
  19. Newcom, D. W., T. J. Baas, and J. F. Lampe. 2002. Prediction of intramuscular fat percentage in live swine using real-time ultrasound. J. Anim. Sci. 80:3046-3052.
  20. Newcom, D. W., K. J. Stalder, T. J. Baas, R. N. Goodwin, F. C. Parrish, and B. R. Wiegand. 2004. Breed differences and genetic parameters of myoglobin concentration in porcine longissimus muscle. J. Anim. Sci. 82:2264-2268.
  21. Newcom, D. W., T. J. Baas, K. J. Stalder, and C. R. Schwab. 2005. Comparison of three models to estimate breeding values for percentage of loin intramuscular fat in Duroc swine. J. Anim. Sci. 83:750-756.
  22. Ragland, K, D., J. Brondum., L. L. Christian. 1997. Prediction of intramuscular fat in live swine using real-time ultrasound. Proceedings National Swine Improvement Federation Conference Annual Meeting, December 5-6, 1997; Des Moines, Iowa, USA. 22:117.122.
  23. SAS. 2007. SAS/STAT Software for PC, Release 9.0, SAS Institute Inc., Cary, NC, USA.
  24. Schworer, D. A., A. Rebsamen, and D. Lorenz. 1995. Selection of intramuscular fat in Swiss pig breeds and the importance of fatty tissue quality. Proceeding of 2nd Dummerstorf Muscle Workshop on Growth and Meat Quality, Rostock, Germany.
  25. Sellier, P. 1998. Genetics of meat and carcass traits. The Genetics of the Pigs (Eds. M. F. Rothschild and A. Rubinsky). CAB Int., New York, NY, USA. pp. 463-510.
  26. Stalder, K. J., R. C. Lacy, T. L. Cross, and G. E. Conaster. 2003. Financial impact of average parity of culled females in a breed-to-wean swine operation using replacement gilt net present value analysis. J. Swine Health Prod. 11:69-74.
  27. Suzuki, K., M. Irie, H. Kadowaki, T. Shibata, M. Kumagai, and A. Nishida. 2005. Genetic parameter estimates of meat quality traits in Duroc pigs selected for average daily gain, longissimus muscle area, backfat thickness, and intramuscular fat content. J. Anim. Sci. 83:2058-2065.
  28. Terry, C. A., J. W. Savell, H. A. Recio, and H. R. Cross. 1989. Using ultrasound technology to predict pork carcass composition. J. Anim. Sci. 67:1279-2884.
  29. Wood, J. D., S. N. Brown, G. R. Nute, F. M. Whittington, A. M. Perry, S. P. Johnson, and J. M. Enser. 1996. Effects of breed, feed level and conditioning time on the tenderness of pork. Meat Sci. 44:105-112. https://doi.org/10.1016/S0309-1740(96)00044-7
  30. Yang, X. J., E. Albrecht, K. Ender, R. Q. Zhao, and J. Wegner. 2005. Computer image analysis of intramuscular adipocytesand marbling in the longissimus muscle of cattle. J. Anim. Sci.84:3251-3258.

Cited by

  1. Higher membrane fluidity mediates the increased subcutaneous fatty acid content in pigs fed reduced protein diets vol.11, pp.04, 2017, https://doi.org/10.1017/S1751731116001968
  2. Investigation of the Perilipin 5 gene expression and association study of its sequence polymorphism with meat and carcass quality traits in different pig breeds pp.1751-732X, 2017, https://doi.org/10.1017/S1751731117002804
  3. Single-Locus and Multi-Locus Genome-Wide Association Studies for Intramuscular Fat in Duroc Pigs vol.10, pp.None, 2015, https://doi.org/10.3389/fgene.2019.00619
  4. Quality characteristics and flavor compounds of pork meat as a function of carcass quality grade vol.32, pp.9, 2019, https://doi.org/10.5713/ajas.18.0965
  5. Profiling and characterization of miRNAs associated with intramuscular fat content in Yorkshire pigs vol.31, pp.3, 2015, https://doi.org/10.1080/10495398.2019.1573191