DOI QR코드

DOI QR Code

Polymorphisms in Epigenetic and Meat Quality Related Genes in Fourteen Cattle Breeds and Association with Beef Quality and Carcass Traits

  • Liu, Xuan (Key Laboratory of Agricultural Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University) ;
  • Usman, Tahir (Key Laboratory of Agricultural Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University) ;
  • Wang, Yachun (Key Laboratory of Agricultural Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University) ;
  • Wang, Zezhao (Key Laboratory of Agricultural Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University) ;
  • Xu, Xianzhou (Dalian Xuelong Industry Limited Group) ;
  • Wu, Meng (Dalian Xuelong Industry Limited Group) ;
  • Zhang, Yi (Key Laboratory of Agricultural Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University) ;
  • Zhang, Xu (Key Laboratory of Agricultural Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University) ;
  • Li, Qiang (Key Laboratory of Agricultural Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University) ;
  • Liu, Lin (Beijing Dairy Cattle Center) ;
  • Shi, Wanhai (Beijing Dairy Cattle Center) ;
  • Qin, Chunhua (Ningxia Sygen BioEngineering Research Center) ;
  • Geng, Fanjun (Dingyuan Seedstock Bulls Breeding Ltd.) ;
  • Wang, Congyong (Dingyuan Seedstock Bulls Breeding Ltd.) ;
  • Tan, Rui (Xinjiang General Livestock Service) ;
  • Huang, Xixia (College of Animal Science, Xinjiang Agriculture University) ;
  • Liu, Airong (Xiertala Breeding Farm, Hailaer Farm Buro) ;
  • Wu, Hongjun (Hailaer Farm Buro) ;
  • Tan, Shixin (Xinjiang Tianshan Animal Husbandry Bio-Eng. Co. Ltd.) ;
  • Yu, Ying (Key Laboratory of Agricultural Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University)
  • Received : 2013.12.21
  • Accepted : 2014.08.14
  • Published : 2015.04.01

Abstract

Improvement for carcass traits related to beef quality is the key concern in beef production. Recent reports found that epigenetics mediates the interaction of individuals with environment and nutrition. The present study was designed to analyze the genetic effect of single nucleotide polymorphisms (SNPs) in seven epigenetic-related genes (DNMT1, DNMT3a, DNMT3b, DNMT3L, Ago1, Ago2, and HDAC5) and two meat quality candidate genes (CAPN1 and PRKAG3) on fourteen carcass traits related to beef quality in a Snow Dragon beef population, and also to identify SNPs in a total of fourteen cattle populations. Sixteen SNPs were identified and genotyped in 383 individuals sampled from the 14 cattle breeds, which included 147 samples from the Snow Dragon beef population. Data analysis showed significant association of 8 SNPs within 4 genes related to carcass and/or meat quality traits in the beef populations. SNP1 (13154420A>G) in exon 17 of DNMT1 was significantly associated with rib-eye width and lean meat color score (p<0.05). A novel SNP (SNP4, 76198537A>G) of DNMT3a was significantly associated with six beef quality traits. Those individuals with the wild-type genotype AA of DNMT3a showed an increase in carcass weight, chilled carcass weight, flank thicknesses, chuck short rib thickness, chuck short rib score and in chuck flap weight in contrast to the GG genotype. Five out of six SNPs in DNMT3b gene were significantly associated with three beef quality traits. SNP15 (45219258C>T) in CAPN1 was significantly associated with chuck short rib thickness and lean meat color score (p<0.05). The significant effect of SNP15 on lean meat color score individually and in combination with each of other 14 SNPs qualify this SNP to be used as potential marker for improving the trait. In addition, the frequencies of most wild-type alleles were higher than those of the mutant alleles in the native and foreign cattle breeds. Seven SNPs were identified in the epigenetic-related genes. The SNP15 in CAPN1 could be used as a powerful genetic marker in selection programs for beef quality improvement in the Snow Dragon Beef population.

Keywords

References

  1. Allan, M. F., R. M. Thallman, R. A. Cushman, S. E. Echternkamp, S. N. White, L. A. Kuehn, E. Casas, and T. P. L. Smith. 2007. Association of a single nucleotide polymorphism in SPP1 with growth traits and twinning in a cattle population selected for twinning rate. J. Anim. Sci. 85:341-347. https://doi.org/10.2527/jas.2006-460
  2. Casas, E., S. N. White, T. L. Wheeler, S. D. Shackelford, M. Koohmaraie, D. G. Riley, C. C. Chase, D. D. Johnson, and T. P. L. Smith. 2006. Effects of calpastatin and micro-calpain markers in beef cattle on tenderness traits. J. Anim. Sci. 84:520-525. https://doi.org/10.2527/2006.843520x
  3. Corva, P., L. Soria, A. Schor, E. Villarreal, M. P. Cenci, M. Motter, C. Mezzadra, L. Melucci, C. Miquel, E. Pavan, G. Depetris, F. Santini, and J. G. Naon. 2007. Association of CAPN1 and CAST gene polymorphisms with meat tenderness in Bos taurus beef cattle from Argentina. Genet. Mol. Biol. 30:1064-1069. https://doi.org/10.1590/S1415-47572007000600006
  4. Dekkers, J. C. M. and F. Hospital. 2002. The use of molecular genetics in the improvement of agricultural populations. Nat. Rev. Genet. 3:22-32. https://doi.org/10.1038/nrg701
  5. Ge, W., M. E. Davis, H. C. Hines, K. M. Irvin, and R. C. M. Simmen. 2001. Association of a genetic marker with blood serum insulin-like growth factor-I concentration and growth traits in Angus cattle. J. Anim. Sci. 79:1757-1762. https://doi.org/10.2527/2001.7971757x
  6. Gill, J. L., S. C. Bishop, C. McCorquodale, J. L. Williams, and P. Wiener. 2009. Association of selected SNP with carcass and taste panel assessed meat quality traits in a commercial population of Aberdeen Angus-sired beef cattle. Genet. Sel. Evol. 41:36. https://doi.org/10.1186/1297-9686-41-36
  7. Guo, X., X. Liu, X. Xu, M. Wu, X. Zhang, Q. Li, W. Liu, Y. Zhang, Y. Wang, and Y. Yu. 2012. The expression levels of DNMT3a/3b and their relationship with meat quality in beef cattle. Mol. Biol. Rep. 39:5473-5479. https://doi.org/10.1007/s11033-011-1349-2
  8. Hoey, A. J., M. M. Reich, G. Davis, and R. Shorthose. 1995. Beta 2-adrenoceptor densities do not correlate with growth, carcass quality, or meat quality in cattle. J. Anim. Sci. 73:3281-3286. https://doi.org/10.2527/1995.73113281x
  9. Juszczuket, K. E., T. Sakowski, K. Flisikowski, K. Wicinska, J. Oprzadek, and S. J. Rosochacki. 2004. Bovine mu-calpain (CAPN1) gene: New SNP within intron 14. J. Appl. Genet. 45:457-460.
  10. Kamei, Y., T. Suganami, T. Ehara, S. Kanai, K. Hayashi, Y. Yamamoto, S. Miura, O. Ezaki, M. Okano, and Y. Oqawa. 2010. Increased expression of DNA methyltransferase 3a in obese adipose tissue: Studies with transgenic mice. Obesity 18:314-321. https://doi.org/10.1038/oby.2009.246
  11. Li, W. F., J. Y. Li, X. Gao, S. Z. Xu, and W. B. Yue. 2012. Association analysis of PRKAG3 gene variants with carcass and meat quality traits in beef cattle. Afr. J. Biotechnol. 11:1855-1861. https://doi.org/10.5897/AJB11.2454
  12. Lindholm-Perry, A. K., L. A. Kuehn, W. M. Snelling, T. P. L. Smith, C. L. Ferrell, T. G. Jenkins, D. A. King, S. D. Shackelford, T. L. Wheeler, and H. C. Freet. 2012. Genetic markers on BTA14 predictive for residual feed intake in beef steers and their effects on carcass and meat quality traits. Anim. Genet. 43:599-603. https://doi.org/10.1111/j.1365-2052.2011.02307.x
  13. Liu, X., X. Y. Guo, X. Z. Xu, M. Wu, X. Zhang, Q. Li, P. P. Ma, Y. Zhang, C. Y. Wang, F. J. Geng, C. H. Qin, L. Liu, W. H. Shi, Y. C. Wang, and Y. Yu. 2012. Novel single nucleotide polymorphisms of the bovine methyltransferase 3b gene and their association with meat quality traits in beef cattle. Genet. Mol. Res. 11:2569-2577. https://doi.org/10.4238/2012.June.29.1
  14. Liu, R. 2007. Fine Maping Milk Production Traits QTL on BTA6 in Chinese Holstein with SNP Markers. PhD Thesis, China Agricultural University, Beijing, China.
  15. Marshal, D. M. 1999. Genetics of meat quality. In: Genetics of Cattle (Eds. R. Fries and A. Ruvinsky) CABI Publishing, Oxford, UK. pp. 605-636.
  16. McClure, M. C., H. R. Ramey, M. M. Rolf, S. D. McKay, J. E. Decker, R. H. Chapple, J. W. Kim, T. M. Taxis, R. L. Weaber, R. D. Schnabel, and J. F. Taylor. 2012. Genome-wide association analysis for quantitative trait loci influencing Warner-Bratzler shear force in five taurine cattle breeds. Anim Genet. 43:662-673. https://doi.org/10.1111/j.1365-2052.2012.02323.x
  17. Page, B. T., E. Casas, R. L. Quaas, R. M. Thallman, T. L. Wheeler, S. D. Shackelford, M. Koohmaraie, S. N. White, G. L. Bennett, J. W. Keele, M. E. Dikeman, and T. P. Smith. 2004. Association of markers in the bovine CAPN1 gene with meat tenderness in large crossbred populations that sample influential industry sires. J. Anim. Sci. 82:3474-3481. https://doi.org/10.2527/2004.82123474x
  18. Pariacote, F., L. D. Van Vleck, and R. E. Hunsley. 1998. Genetic and phenotypic parameters for carcass traits of American Shorthorn beef cattle. J. Anim. Sci.76:2584-2588. https://doi.org/10.2527/1998.76102584x
  19. Pinto, L. F. B., J. B. S. Ferraz, F. V. Meirelles, J. P. Eler, F. M. Rezende, M. E. Carvalho, H. B. Almeida, and R. C. G. Silva. 2010. Association of SNPs on CAPN1 and CAST genes with tenderness in Nellore cattle. Genet. Mol. Res. 9:1431-1442. https://doi.org/10.4238/vol9-3gmr881
  20. Qin, C. 2008. QTL Mapping of Important Economic Traits on BTA3in Chinese Holstein. PhD Thesis, China Agricultural University, Beijing, China.
  21. Rohrer, G. A., D. J. Nonneman, R. K. Miller, H. Zerby, and S. J. Moeller. 2012. Association of single nucleotide polymorphism (SNP) markers in candidate genes and QTL regions with pork quality traits in commercial pigs. Meat Sci. 92:511-518. https://doi.org/10.1016/j.meatsci.2012.05.020
  22. Ryan, M. T., R. M. Hamill, O. A. M. O' Halloran, G. C. Davey, J. McBryan, A. M. Mullen, C. McGee, M. Gispert, O. I. Southwood, and T. Sweeney. 2012. SNP variation in the promoter of the PRKAG3 gene and association with meat quality traits in pig. BMC Genet. 13:66.
  23. Shin, S. C. and E. R. Chung. 2007. SNP detection of carboxypeptidase E gene and its association with meat quality and carcass traits in Korean cattle. Asian Australas. J. Anim. Sci. 20:328-333. https://doi.org/10.5713/ajas.2007.328
  24. Smith, T. P., E. Casas, C. E. Rexroad, S. M. Kappes, and J. W. Keele. 2000. Bovine CAPN1 maps to a region of BTA29 containing a quantitative trait locus for meat tenderness. J. Anim. Sci. 78:2589-2594. https://doi.org/10.2527/2000.78102589x
  25. Turek-Plewa, J. and P. P. Jagodzinski. 2005. The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell. Mol. Biol. Lett. 10:631-647.
  26. White, S. N., E. Casas, T. L. Wheeler, S. D. Shackelford, M. Koohmaraie, D. G. Riley, C. C. Chase, D. D. Johnson, J. W. Keele, and T. P. L. Smith. 2005. A new single nucleotide polymorphism in CAPN1 extends the current tenderness marker test to include cattle of Bos indicus, Bos taurus, and crossbred descent. J. Anim. Sci. 83:2001-2008. https://doi.org/10.2527/2005.8392001x
  27. van Eenennaam, A. L., J. Li, R. M. Thallman, R. L. Quaas, M. E. Dikeman, C. A. Gill, D. E. Franke, and M. G. Thomas. 2007. Validation of commercial DNA tests for quantitative beef quality traits. J. Anim. Sci. 85:891-900. https://doi.org/10.2527/jas.2006-512
  28. Zan, L., J. Zhang, and X. Liu. 2007. Association study on AGPAT6 intron3 polymorphism and milk performance of dairy cattle. Sci. Agric. Sin. 40:1498-1503.

Cited by

  1. Integrated analysis of lncRNA and mRNA expression in rainbow trout families showing variation in muscle growth and fillet quality traits vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-30655-8
  2. Genetic basis of improving the palatability of beef cattle: current insights vol.33, pp.3, 2015, https://doi.org/10.1080/08905436.2019.1616299
  3. Detection of genetic variation and activity analysis of the promoter region of the cattle tRNA-modified gene TRDMT1 vol.64, pp.1, 2015, https://doi.org/10.5194/aab-64-147-2021
  4. Impacts of Epigenetic Processes on the Health and Productivity of Livestock vol.11, pp.None, 2015, https://doi.org/10.3389/fgene.2020.613636
  5. Asociación de polimorfismos en los genes CAPN y CAST con propiedades fisicoquímicas de la carne bovina: una revisión vol.16, pp.1, 2015, https://doi.org/10.21615/cesmvz.16.1.1
  6. Genome-Wide Association Study Identifies Candidate Genes Associated with Feet and Leg Conformation Traits in Chinese Holstein Cattle vol.11, pp.8, 2015, https://doi.org/10.3390/ani11082259
  7. Genome-Wide Detection of Structural Variations Reveals New Regions Associated with Domestication in Small Ruminants vol.13, pp.8, 2015, https://doi.org/10.1093/gbe/evab165