참고문헌
- Alshihri, M.M., Azmy, A.M. and El-Bisy, M.S. (2009), "Neural networks for predicting compressive strength of structural light weight concrete", Construct. Build. Mater., 23(6), 2214-2229. https://doi.org/10.1016/j.conbuildmat.2008.12.003
- Altun, F., Kisi, O . and Aydin, K. (2008), "Predicting the compressive strength of steel fiber added lightweight concrete using neural network", Comput. Mater. Sci., 42(2), 259-265. https://doi.org/10.1016/j.commatsci.2007.07.011
- Bilim, C., Atis, C.D., Tanyildizi, H. and Karahan, O. (2009), "Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network", Adv. Eng. Softw., 40(5), 334-340. https://doi.org/10.1016/j.advengsoft.2008.05.005
- Dantas, A.T.A., Leite, M.B. and Nagahama, K.J. (2013), "Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks", Construct. Build. Mater., 38, 717-722. https://doi.org/10.1016/j.conbuildmat.2012.09.026
- Demir, F. (2008), "Prediction of elastic modulus of normal and high strength concrete by artificial neural networks", Construct. Build. Mater., 22(7), 1428-1435. https://doi.org/10.1016/j.conbuildmat.2007.04.004
- Fang, I.K. and Shaiu, J.K. (2004), "Torsional behavior of normal and high strength concrete beams", ACI Struct. J., 101(3), 304-313.
- Hsu, T.T.C. (1968), "Torsion of structural concrete-behaviour of reinforced concrete rectangular members", Tors. Struct. Concrete, 18, 261-306.
- Lutz, L.A. and Gergely, P. (1967), "Mechanics of bond and slip of deformed bars in concrete", ACI Struct. J., 64(11), 711-721.
- Mansur, M.A., Nagataki, S., Lee, S.H. and Oosumimoto, Y. (1989), "Torsional response of fibrous concrete beams", ACI Struct. J., 86(1), 36-44.
- Mansur, M.A. and Paramasivam, P. (1982), "Steel fibre reinforced concrete beams in pure torsion", Int. J. Cement Compos. Lightw. Concrete, 4(1), 39-45. https://doi.org/10.1016/0262-5075(82)90006-9
- Naderpour, H., Kheyroddin, A. and Amiri, G.G. (2010), "Prediction of FRP-confined compressive strength of concrete using artificial neural networks", Compos. Struct., 92(12), 2817-2829. https://doi.org/10.1016/j.compstruct.2010.04.008
- Narayanan, R. and Karem-Palanjian A.S. (1983), "Steel fiber reinforced concrete beams in pure torsion", Int. J. Cement Compos. Lightw. Concrete, 5(4), 235-246. https://doi.org/10.1016/0262-5075(83)90065-9
- Narayanan, R. and Karem-Palanjian A.S. (1986), "Torsion in beams reinforced with bars and fibers", J. Struct. Eng., 112(1), 53-66. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:1(53)
- Olivito, R.S. and Zuccarello, F.A. (2010), "An experimental study on the tensile strength of steel fiber reinforced concrete", Compos. Part B: Eng., 41(3), 246-255. https://doi.org/10.1016/j.compositesb.2009.12.003
- Orangun, C.O., Jirsa, J.O. and Breen, J.E. (1977), "A revaluation of test data on development length and splices", ACI Struct. J., 74(3), 114-122.
- Oztas, A., Pala, M., Ozbay, E., Kanca, E., Caglar, N. and Bhatti, M.A. (2006), "Predicting the compressive strength and slump of high strength concrete using neural network", Construct. Build. Mater., 20(9), 769-775. https://doi.org/10.1016/j.conbuildmat.2005.01.054
- Rao, T.D.G. and Seshu, D.R. (2003), "Torsion of steel fiber reinforced concrete members", Cement Concrete Res., 33(11), 1783-1788. https://doi.org/10.1016/S0008-8846(03)00174-1
- Rao, T.D.G. and Seshu, D.R. (2005), "Analytical model for the torsional response of steel fiber reinforced concrete members under pure torsion", Cement Concrete Compos., 27(4), 493-501. https://doi.org/10.1016/j.cemconcomp.2004.03.006
- Rasmussen, L.J. and Baker, G. (1995), "Torsion in reinforced normal and high-strength concrete beams-part 1: experimental test series", ACI Struct. J., 92(1), 56-62.
- Song, P.S. and Hwang, S. (2004), "Mechanical properties of high-strength steel fiber reinforced concrete", Construct. Build. Mater., 18(9), 669-673. https://doi.org/10.1016/j.conbuildmat.2004.04.027
- Topcu, I.B., Boga, A.R. and Hocaoglu, F.O. (2009), "Modeling corrosion currents of reinforced concrete using ANN", Autom. Construct., 18(2), 145-152. https://doi.org/10.1016/j.autcon.2008.07.004
- Topcu, I.B. and Saridemir, M. (2008a), "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 41(3), 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009
- Topcu, I.B. and Saridemir, M. (2008b), "Prediction of mechanical properties of recycled aggregate concretes containing silica fume using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 42(1), 74-82. https://doi.org/10.1016/j.commatsci.2007.06.011
- Yang, I.H., Joh, C., Lee, J.W. and Kim, B.S. (2013), "Torsional behavior of ultra-high performance concrete squared beams", Eng. Struct., 56, 372-383. https://doi.org/10.1016/j.engstruct.2013.05.027
- Ersoy, U. (1999), Reinforced Concrete, Middle East Technical University Press, Ankara, Turkey.
- Haykin, S. (1999), Neural Networks - A Comprehensive Foundation, 2nd Edition, Prentice Hall, New Jersey, NJ, USA.
- Nilson, A.H. and Winter, G. (1991), Design of Concrete Structures, 11th Edition, McGraw-Hill, New York, NY, USA.
피인용 문헌
- Probabilistic seismic response transformation factors between SDOF and MDOF systems using artificial neural networks vol.18, pp.4, 2016, https://doi.org/10.21595/jve.2016.16506
- Shear forces amplification due to torsion, explicit reliance on structural topology. Theoretical and numerical proofs using the Ratio of Torsion (ROT) concept vol.61, pp.1, 2015, https://doi.org/10.12989/sem.2017.61.1.015
- Prediction of compressive strength of bacteria incorporated geopolymer concrete by using ANN and MARS vol.70, pp.6, 2019, https://doi.org/10.12989/sem.2019.70.6.671
- Relevance vector based approach for the prediction of stress intensity factor for the pipe with circumferential crack under cyclic loading vol.72, pp.1, 2015, https://doi.org/10.12989/sem.2019.72.1.031
- A new empirical formula for prediction of the axial compression capacity of CCFT columns vol.33, pp.2, 2019, https://doi.org/10.12989/scs.2019.33.2.181
- Prediction of ultimate load capacity of concrete-filled steel tube columns using multivariate adaptive regression splines (MARS) vol.33, pp.4, 2015, https://doi.org/10.12989/scs.2019.33.4.583
- Strength and strain modeling of CFRP -confined concrete cylinders using ANNs vol.27, pp.3, 2015, https://doi.org/10.12989/cac.2021.27.3.225