DOI QR코드

DOI QR Code

Estimation of Overflow-Induced Pressure and Velocity on a Mound-Type Sea Dike

월류 시 마운드형태 방조제에 작용하는 압력과 유속 산정

  • Received : 2014.09.10
  • Accepted : 2015.01.19
  • Published : 2015.03.01

Abstract

Wave overflow can cause a failure of sea dike structure. Based on the results of the field surveys on mound-type sea dike, the failure of vicinity of crown and the scouring of toe at the landward was revealed as the most representative failure example. One of the main factors related to this failure pattern is overflow-induced pressure and velocity. Thus, in this study the analytical equations which can determine the pressure and the velocity induced by overflow in sea dike were proposed and verified. To accomplish this, assumed that the flow is quasi-steady and irrotational, and concentric circular streamlines around the vicinity of crown and toe of the sea dike. Flow was assumed as critical state and Bernoulli equation was used to develop the equations that can determine the pressure and velocity at the vicinity of crown and toe of the sea dike. Using these equations, the pressure and the velocity were calculated in condition of various overflow depths and radiuses of circular streamline. Based on the calculation results, while a negative pressure was occurred at the vicinity of crown, a significant amount of positive pressure occurred at the toe. The existence of flow-induced shear stresses was also confirmed. In addition, the limitation of the proposed equations was discussed.

해일에 의한 바닷물의 월류는 방조제 구조물에 피해를 유발시킨다. 지금까지 발생된 마운드 형태 방조제의 파괴 유형 조사 결과, 육지 쪽 마루부 파손과 선단부의 세굴이 대표적인 파괴 사례로 지목되었다. 이와 같은 파괴를 유발하는 가장 큰 원인은 월류에 의해 발생된 압력과 유속이다. 본 연구에서는 에너지 관점에서 마운드 형태 방조제에서 압력과 유속을 산정할 수 있는 이론해를 제안하고 검증하였다. 이를 위해 방조제 마루부와 선단부에 흐름을 유사정적비회전류로 보고 동심원유선이 형성된다고 가정하였다. 한계흐름조건과 베르누이정리를 이용하여 방조제 마루부와 배면 선단부에서의 작용하는 압력 및 유속 산정식을 유도하였다. 이들 식을 이용하여 동심원유선 및 월류고를 가정하여 마루부와 선단부에서 압력과 유속을 산정하였다. 그 결과 마루부에서는 부의 압력이 선단부에서는 양의 압력이 각각 크게 작용하는 것으로 나타났으며 유속에 의한 전단응력도 작용하는 것을 확인하였다. 또한 제안된 이론해의 적용 한계에 대한 고찰도 이루어졌다.

Keywords

References

  1. Chinnarasri, C., Tingsanchali, T., Weesakul, S. and Wongwises, S. (2003), Flow patterns and damage of dike overtopping, International Journal of Sediment Research, Vol. 18, No. 4, pp. 301-309.
  2. D'Eliso, C. (2007), Breaching of sea dikes initiated by wave overtopping. A tiered and modular modeling approach. Ph.D. thesis, Dissertation, Leichtweiss-Institut fu Wasserbau, Technical University Braunschweig, p. 142.
  3. Henderson, F. M. (1966), Open channel flow, Macmillan, New York, pp. 211-213.
  4. Ikeno, M., Mori, N. and Tanaka, H. (2001), Experimental study on tsunami force and impulsive force by a drifter under breaking bore like tsunamis, Proc. Conf. Coastal Engineering., JSCE, Vol. 48, pp. 846-850 (in Japanese).
  5. Jayaratne, R., Mikami, T., Esteban, M. and Shibayama, T. (2013), Investigation of coastal structure failure due to the 2011 great eastern japan earthquake tsunami, Coasts, Marine Structures and Breakwaters, Institution of Civil Engineers (ICE), Edinburgh, UK, pp. 1-10.
  6. Kato, F., Inagaki, S. and Fukuhama, M. (2006), Wave force on coastal dike due to tsunami, 30th ICCE, San Diego., World Scientific, NJ, Vol. 5, pp. 5150-5161.
  7. Kato, F., Suwa, Y., Watanabe, K. and Hatogai, S. (2012), Mechanics of coastal dike failure induced by the Great East Japan earthquake tsunami, Proceedings of the 33rd International Conference on Coastal Engineering, Spain, Structures 40, pp. 1-9.
  8. Korea Rural Community Corporation (2011), Investigation and design practical manual (revised): chapter 4 reclamation, pp. 50-53.
  9. Kortenhaus, A., Oumeraci, H., Weissmann, R. and Richwein, W. (2002), Failure mode and fault tree analysis for sea and estuary dikes, Proceedings 28th International Conference on Coastal Engineering (ICCE), Cardiff, Wales, UK, pp. 1-13.
  10. Mikami, T., Shibayama, T., Esteban, M. and Matsumaru, R. (2012), Field survey of the 2011 tohoku earthquake and tsunami in miyagi and fukushima prefectures, Coastal Engineering Journal, Vol. 54, No. 1, pp. 1-26.
  11. Mizutani, S. and Imamura, F. (2002), Proposal of a design external force calculation flow in consideration of the impact and overflow of tsunami bores, Coastal Engineering, JSCE, Vol. 49, pp. 731-735 (in Japanese).
  12. Munson, B. R., Rothmayer, A. P., Okiishi, T. H. and Huebsch, W. W. (2012), Foundation fluid mechanics, John Wiley & Sons, NJ, pp. 292-296.
  13. Nakao, H., Sato, S. and Yeh, H. (2012), Laboratory study on destruction mechanisms of coastal dyke due to overflowing tsunami, Coastal Engineering, JSCE, Vol. 68, No. 2, pp. 1281-1285 (in Japanese).
  14. Ogasawara, T., Matsubayashi, Y., Sakai, S. and Yasuda, T. (2012), Characteristics of the 2011 tohoku earthquake and tsunami and its impact on the northern iwate coast, Coastal Engineering Journal, Vol. 54, No. 1, pp. 1-16.
  15. Smagorinsky, J. (1963), General circulation experiments with the primitive equations, Mon, Weath. Rev., Vol. 91, No.3, pp. 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  16. Suzuki, T., Okayasu, A. and Shibayama, T. (2007), A numerical study of intermittent sediment concentration under breaking waves in the surf zone, Coastal Engineering, Vol. 54, No. 5, pp. 433-444. https://doi.org/10.1016/j.coastaleng.2006.11.002
  17. Tanimoto, K., Tsuruya, K. and Nakano, S. (1984), Tsunami force of nihonkai-chubu earthquake in 1983 and cause of revetment damage, Proc. Conf. Coastal Eng., JSCE, 31, pp. 257-261 (in Japanese).
  18. Yamamoto, Y., Takanashi, H., Hettiarachchi, S. and Samarawickrama, S. (2006), Verification of destructive mechanism of structures in Sri Lanka and Thailand due to the Indian ocean tsunami, Coastal Engineering, Vol. 48, No. 2, pp. 117-145. https://doi.org/10.1142/S0578563406001374
  19. Yeh, H. and Mason, H. B. (2014), Sediment response to tsunami loading: mechanisms and estimates, Geotechnique, Vol. 64, No. 2, pp. 131-143. https://doi.org/10.1680/geot.13.P.033

Cited by

  1. Tsunami Effects on Buildings and Coastal Structures vol.11, pp.4, 2015, https://doi.org/10.20965/jdr.2016.p0662
  2. Shear strength and interface friction characteristics of expandable foam grout vol.249, pp.None, 2015, https://doi.org/10.1016/j.conbuildmat.2020.118719