Acknowledgement
Supported by : National Science Foundation of China
References
- Angst, U.M. and Polder, R. (2014), "Spatial variability of chloride in concrete within homogeneously exposed areas", Cement Concrete Res., 56, 40-51. https://doi.org/10.1016/j.cemconres.2013.10.010
- Baroghel-Bouny, V. (2007), "Water vapour sorption experiments on hardened cementitious materials Part I: Essential tool for analysis of hygral behaviour and its relation to pore structure", Cement Concrete Res., 37(3), 414-437. https://doi.org/10.1016/j.cemconres.2006.11.019
- Bary, B. and Sellier, A. (2004), "Coupled moisture-carbon dioxide-calcium transfer model for carbonation of concrete", Cement Concrete Res., 34(10), 1859-1872. https://doi.org/10.1016/j.cemconres.2004.01.025
- Bentz, D.P., Stutzman, P.E. and Garboczi, E.J. (1992), "Experimental and simulation studies of the interfacial zone in concrete", Cement Concrete Res., 22(5), 891-902. https://doi.org/10.1016/0008-8846(92)90113-A
- Burkan Isgor, O. and Razaqpur, A.G. (2004), "Finite element modeling of coupled heat transfer, moisture transport and carbonation processes in concrete structures", Cement Concrete Compos., 26(1), 57-73. https://doi.org/10.1016/S0958-9465(02)00125-7
- Hansen, T.C. (1986), "Physical structure of hardened cement paste. A classical approach", Mater. Struct., 19(6), 423-436. https://doi.org/10.1007/BF02472146
- Heine, C.J., Moller, C.A., Peter, M.A. and Sieberty, K.G. (2013), "Multiscale Adaptive Simulations of Concrete Carbonation Taking into Account the Evolution of the Microstructure", Proceedings of the Fifth Biot Conference on Poromechanics, Vienna, Austria, July.
- Huang, Q., Jiang, Z., Zhang, W., Gu, X. and Dou, X. (2012), "Numerical analysis of the effect of coarse aggregate distribution on concrete carbonation", Constr. Build. Mater., 37, 27-35. https://doi.org/10.1016/j.conbuildmat.2012.06.074
- Huet, C. (1993), "An integrated approach of concrete micromechanics", Micromechanics of Concrete and Cementitious Composites, Presses Polytechniques et Universitaires Romandes, Lausanne, 117-146.
- Jennings, H.M. and Tennis, P.D. (1994), "Model for the developing microstructure in Portland cement pastes", J. Am.Ceramic Soc., 77(12), 3161-3172. https://doi.org/10.1111/j.1151-2916.1994.tb04565.x
- Meier, S.A., Peter, M.A., Muntean, A. and Bohm, M. (2007a), "Dynamics of the internal reaction layer arising during carbonation of concrete", Chem. Eng.Sci., 62(4), 1125-1137. https://doi.org/10.1016/j.ces.2006.11.014
- Meier, S.A., Peter, M.A. and Bohm, M. (2007b), "A two-scale modelling approach to reaction-diffusion processes in porous materials", Comput. Mater. Sci., 39(1), 29-34. https://doi.org/10.1016/j.commatsci.2006.02.017
- Nagai, G., Yamada, T. and Wada, A. (2000), "Three-dimensional nonlinear finite element analysis of the macroscopic compressive failure of concrete materials based on real digital image", Proceedings of the 8th ICCCBE, Stanford University, California, USA, 449-56.
- Ollivier, J.P., Maso, J.C. and Bourdette, B. (1995), "Interfacial transition zone in concrete", Adv. Cement Based Mater., 2(1), 30-38. https://doi.org/10.1016/1065-7355(95)90037-3
- Pan, Z.C., Ruan, X. and Chen, A.R. (2014), "Chloride diffusivity of concrete: probabilistic characteristics at meso-scale", Comput. Concr.13(2), 187-207. https://doi.org/10.12989/cac.2014.13.2.187
- Papadakis, V.G., Vayenas, C.G. and Fardis, M.N. (1989), "A reaction engineering approach to the problem of concrete carbonation", AIChE J., 35(10), 1639-1650. https://doi.org/10.1002/aic.690351008
- Papadakis, V.G., Vayenas, C.G. and Fardis, M.N. (1991a), "Physical and chemical characteristics affecting the durability of concrete", ACI Mater. J., 88(2), 186-196.
- Papadakis, V.G., Vayenas, C.G. and Fardis, M.N. (1991b), "Fundamental modeling and experimental investigation of concrete carbonation", ACI Materials Journal, 88(4), 363-373.
-
Park, D.C. (2008), "Carbonation of concrete in relation to
$CO^2$ permeability and degradation of coatings", Constr.Build. Mater., 22(11), 2260-2268. https://doi.org/10.1016/j.conbuildmat.2007.07.032 - Peter, M.A., Muntean, A., Meier, S.A. and Bohm, M. (2008), "Competition of several carbonation reactions in concrete: a parametric study", Cement Concrete Res., 38(12), 1385-1393. https://doi.org/10.1016/j.cemconres.2008.09.003
- Peter, M.A. and Bohm, M. (2009), Multi-scale modelling of chemical degradation mechanisms in porous media with evolving microstructure, Multiscale Model. Sim., 7(4), 1643-1668. https://doi.org/10.1137/070706410
- Prokopski, G. and Halbiniak, J. (2000), "Interfacial transition zone in cementitious materials", Cement Concrete Res., 30(4), 579-583. https://doi.org/10.1016/S0008-8846(00)00210-6
- Qian, Z. (2012), "Multiscale modeling of fracture processes in cementitious materials", Ph.D. Dissertation, Delft University of Technology, Delft in the Netherlands.
- Radu, F.A., Muntean, A., Pop, I.S., Suciu, N. and Kolditz, O. (2013), "A mixed finite element discretization scheme for a concrete carbonation model with concentration-dependent porosity", J. Comput. Appl. Math., 246, 74-85. https://doi.org/10.1016/j.cam.2012.10.017
- Ruan, X. and Pan, Z.C. (2012), "Mesoscopic simulation method of concrete carbonation process", Struct. Infrastruct. Eng., 8(2), 99-110. https://doi.org/10.1080/15732479.2011.605370
- Saetta, A.V., Schrefler, B.A. and Vitaliani, R.V. (1995), "2-D model for carbonation and moisture/heat flow in porous materials", Cement Concrete Res., 25(8), 1703-1712. https://doi.org/10.1016/0008-8846(95)00166-2
- Scrivener, K.L. and Nemati, K.M. (1996), "The percolation of pore space in the cement paste/aggregate interfacial zone of concrete", Cement Concrete Res., 26(1), 35-40. https://doi.org/10.1016/0008-8846(95)00185-9
- Stewart, M.G., Wang, X. and Nguyen, M.N. (2011), "Climate change impact and risks of concrete infrastructure deterioration", Eng. Struct., 33(4), 1326-1337. https://doi.org/10.1016/j.engstruct.2011.01.010
- Wang, X.Y. and Lee, H.S. (2009), "A model predicting carbonation depth of concrete containing silica fume", Mater. Struct., 42(6), 691-704. https://doi.org/10.1617/s11527-008-9413-7
- Wang, L., Wang, X., Mohammad, L. and Abadie, C. (2005), "Unified method to quantify aggregate shape angularity and texture using Fourier analysis", J. Mater.Civil Eng., 17(5), 498-504. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:5(498)
- Zheng, J. (2000), "Mesostructure of concrete-stereological analysis and some mechanical implications", Ph.D. Dissertation, Delft University of Technology, Delft in the Netherlands.
- Zheng, J.J., Li, C.Q. and Zhao, L.Y. (2003), "Simulation of two-dimensional aggregate distribution with wall effect", J. Mater. Civil Eng., 15(5), 506-510. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:5(506)
- Zheng, J.J., Zhoua, X.Z., Wub, Y.F. and Jinc, X.Y. (2012), "A numerical method for the chloride diffusivity in concrete with aggregate shape effect", Constr. Build. Mater., 31, 151-156. https://doi.org/10.1016/j.conbuildmat.2011.12.061
Cited by
- Mesoscopic simulation of steel rebar corrosion process in concrete and its damage to concrete cover vol.13, pp.4, 2017, https://doi.org/10.1080/15732479.2016.1164730
- Carbonation depth in 57 years old concrete structures vol.19, pp.4, 2015, https://doi.org/10.12989/scs.2015.19.4.953
- Numerical Modelling of the Effect of Filler/Matrix Interfacial Strength on the Fracture of Cementitious Composites vol.11, pp.8, 2018, https://doi.org/10.3390/ma11081362
- A study on image-processing based identification of aspect ratio of coarse aggregate vol.275, pp.None, 2015, https://doi.org/10.1051/matecconf/201927502007
- Reactive transport numerical modeling of mortar carbonation: Atmospheric and accelerated carbonation vol.23, pp.None, 2019, https://doi.org/10.1016/j.jobe.2019.01.038
- Numerical Simulation of Mesodamage Behavior of Concrete Based on Material Point Method vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/9183253
- Standardization of life-cycle performance evaluation and application to suspension bridge with multiple pylons vol.16, pp.4, 2015, https://doi.org/10.1080/15732479.2019.1662065
- Simulation method of concrete chloride ingress with mesoscopic cellular automata vol.249, pp.None, 2020, https://doi.org/10.1016/j.conbuildmat.2020.118778
- Mesoscale approach for estimating carbonation depth affected by random aggregates under supercritical conditions vol.263, pp.None, 2015, https://doi.org/10.1016/j.conbuildmat.2020.120633