DOI QR코드

DOI QR Code

Influence of softening curves on the residual fracture toughness of post-fire normal-strength concrete

  • Yu, Kequan (College of civil engineering, Tongji University) ;
  • Lu, Zhoudao (College of civil engineering, Tongji University)
  • Received : 2013.04.10
  • Accepted : 2015.01.03
  • Published : 2015.02.25

Abstract

The residual fracture toughness of post-fire normal-strength concrete subjected up to $600^{\circ}C$ is considered by the wedge splitting test. The initial fracture toughness $K_I^{ini}$ and the critical fracture toughness $K_I^{un}$ could be calculated experimentally. Their difference is donated as the cohesive fracture toughness $K_I^c$ which is caused by the distribution of cohesive stress on the fracture process zone. A comparative study on determining the residual fracture toughness associated with three bi-linear functions of the cohesive stress distribution, i.e. Peterson's softening curve, CEB-FIP Model 1990 softening curve and Xu's softening curve, using an analytical method is presented. It shows that different softening curves have no significant influence on the fracture toughness. Meanwhile, comparisons between the experimental and the analytical calculated critical fracture toughness values further prove the validation of the double-K fracture model to the post-fire concrete specimens.

Keywords

Acknowledgement

Supported by : Natural Science Fund of China

References

  1. Baker, G. (1996), "The effect of exposure to elevated temperatures on the fracture energy of plain concrete", RILEM Mater. Struct., 29(6), 383-388. https://doi.org/10.1007/BF02486347
  2. Bazant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", RILEM Mater Struct, 16(93), 155-177.
  3. Bazant, Z.P. and Prat, P.C. (1988), "Effect of temperatures and humidity on fracture energy of concrete", ACI Mater. J., 85(4), 262-271.
  4. Bazant, Z.P. and Kazemi, M.T. (1990), "Determination of fracture energy, process zone length and brittleness number from size effect, with application to rock and concrete", Int. J. Fract., 44(2), 111-131. https://doi.org/10.1007/BF00047063
  5. Bretschneider, N., Slowik, V., Villmann, B. and Mechtcherine, V. (2011), "Boundary effect on the softening curve of concrete", Eng. Fract. Mech., 78(17), 2896-2906. https://doi.org/10.1016/j.engfracmech.2011.08.006
  6. Bueckner, H.F. (1970), "A novel principle for the computation of stress intensity factors", Z. Angew. Math. Mech., 50(2), 529-546.
  7. Bulletin D' Information (1993), CEB-Comite Euro-international du Beton-CEB-FIP Model Code 1990, Lausanne.
  8. Chen, H.H. and Su, R.K.L. (2013), "Tension softening curves of plain concrete", Constr. Build. Mater., 44(7), 440-451. https://doi.org/10.1016/j.conbuildmat.2013.03.040
  9. Glinka, G. and Shen, G. (1991). "Universal features of weight functions for cracks in Mode I", Eng. Fract. Mech., 40(6), 1135-1146. https://doi.org/10.1016/0013-7944(91)90177-3
  10. Gopalaratnam, V.S. and Shah, S.P. (1985), "Softening response of plain concrete in direct tension", ACI Mater. J., 82(3), 310-323.
  11. Hillerboerg, A., Modeer, M. and Peterson P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6(6), 773-782. https://doi.org/10.1016/0008-8846(76)90007-7
  12. Hilsdorf, H.K. and Brameshuber, W. (1991), Current Trends in Concrete Fracture Research. Springer, Netherlands.
  13. Hisham, A.F. and Sameer, A.H. (1997), "Variation of the fracture toughness of concrete with temperature", Constr. Build. Mater., 11(2), 105-108. https://doi.org/10.1016/S0950-0618(97)00005-6
  14. Jenq, Y.S. and Shah, S.P. (1985a), "Two parameter fracture model for concrete", J Eng Mech, ASCE, 111(10), 1227-1241. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:10(1227)
  15. Jenq, Y.S. and Shah, S.P. (1985b), "A fracture toughness criterion for concrete", Eng. Fract. Mech., 21(5), 1055-1069. https://doi.org/10.1016/0013-7944(85)90009-8
  16. Kumar, S. and Barai, S.V. (2012), "Size-effect of fracture parameters for crack propagation in concrete: a comparative study", Comput. Concr., 9(1), 1-19. https://doi.org/10.12989/cac.2012.9.1.001
  17. Kumar, S. and Barai, S.V. (2010), "Determining the double-K fracture parameters for three-point bending notched concrete beams using weight function", Fatigue Fract. Eng. Mater Struct, 33(10), 645-660. https://doi.org/10.1111/j.1460-2695.2010.01477.x
  18. Kumar, S. and Barai, S.V. (2009), "Determining double-K fracture parameters of concrete for compact tension and wedge splitting tests using weight function", Eng. Fract. Mech., 76(7), 935-946. https://doi.org/10.1016/j.engfracmech.2008.12.018
  19. Kumar, S. and Barai, S.V. (2008a), "Influence of specimen geometry and size-effect on the $K_R$-curve based on the cohesive stress in concrete", Int. J. Fract., 152(2), 127-148. https://doi.org/10.1007/s10704-008-9275-6
  20. Kumar, S. and Barai, S.V. (2008b), "Influence of specimen geometry on determination of double-K fracture parameters of concrete: a comparative study", Int. J. Fract, 149(1), 47-66. https://doi.org/10.1007/s10704-008-9227-1
  21. Kwon, S.H., Zhao, Z.F. and Shah, S.P. (2008), "Effect of specimen size on fracture energy and softening curve of concrete: Part II. Inverse analysis and softening curve", Cement Concrete Res., 38(8), 1061-1069. https://doi.org/10.1016/j.cemconres.2008.03.014
  22. Nallathambi, P. and Karihaloo, B.L. (1986), "Determination of specimen-size independent fracture toughness of plain concrete", Mag. Concr. Res., 38(135), 67-76. https://doi.org/10.1680/macr.1986.38.135.67
  23. Nielsen, C.V. and Bicanic, N. (2003), "Residual fracture energy of high-performance and normal concrete subject to high temperatures", RILEM Mater. Struct., 36(8), 515-521. https://doi.org/10.1617/13880
  24. Petersson, P.E. (1981), Crack Growth and Development of Fracture Zones in Plain Concrete and Similar Materials, Division of Building Materials, Lund Institute of Technology, Report TVBM-1006, Sweden.
  25. Park, K., Paulino, H.G. and Roesler, J.R. (2008), "Determination of the kink point in the bilinear softening model for concrete", Eng. Fract. Mech., 75(13), 3806-3818. https://doi.org/10.1016/j.engfracmech.2008.02.002
  26. Phillips, D.V. and Zhang, Z. (1993), "Direct tension tests on notched and un-notched plain concrete specimens", Mag. Concr. Res., 45(162), 25-35. https://doi.org/10.1680/macr.1993.45.162.25
  27. Prokopski, G. (1995), "Fracture toughness of concretes at high temperature", J Mater. Sci., 30(6), 1609-1612. https://doi.org/10.1007/BF00375272
  28. Reinhardt, H.W., Cornelissen, H.A.W. and Hordijk, D.A. (1986), "Tensile tests and failure analysis of concrete", J. Struct. Eng. ASCE, 112(11), 2462-2477. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:11(2462)
  29. Roesler, J., Paulino, G.H., Park, K. and Gaedicke, C. (2007), "Concrete fracture prediction using bilinear softening", Cement Concrete Compos., 29(4), 300-312. https://doi.org/10.1016/j.cemconcomp.2006.12.002
  30. Tada, H., Paris, P.C. and Irwin, G. (1985), The stress analysis of cracks handbook. Paris Productions Incorporated, St. Louis, Paris, France.
  31. Xu, S. and Reinhardt, H.W. (1999a), "Determination of double-K criterion for crack propagation in quasi-brittle materials, Part I: Experimental investigation of crack propagation", Int. J. Fract., 98(2), 111-149. https://doi.org/10.1023/A:1018668929989
  32. Xu. S and Reinhardt, H.W. (1999b), "Determination of double-K criterion for crack propagation in quasi-brittle materials, Part II: Analytical evaluating and practical measuring methods for three-point bending notched beams", Int. J. Fract, 98(2), 151-177. https://doi.org/10.1023/A:1018740728458
  33. Xu, S. and Reinhardt, H.W. (1999c), "Determination of double-K criterion for crack propagation in quasi-brittle materials, Part III: Compact tension specimens and wedge splitting specimens", Int. J. Fract., 98(2), 179-193. https://doi.org/10.1023/A:1018788611620
  34. Yu, J.T., Yu, K.Q. and Lu, Z.D. (2012), "Residual fracture properties of concrete subjected to elevated temperatures", RILEM Mater. Struct., 45 (8), 1155-1165. https://doi.org/10.1617/s11527-012-9823-4
  35. Yu, K.Q. and Lu, Z.D. (2014), "Determining residual double-K fracture toughness of post-fire concrete using analytical and weight function method", RILEM Mater. Struct., 47(5), 839-852. https://doi.org/10.1617/s11527-013-0097-2
  36. Zhang, B., Bicanic, N., Pearce, C.J. and Balabanic, G. (2000), "Residual fracture properties of normal and high-strength concrete subject to elevated temperatures", Mag. Concr. Res., 52(2), 123-136. https://doi.org/10.1680/macr.2000.52.2.123
  37. Zhang, B. and Bicanic, N. (2006), "Fracture energy of high-performance concrete at high temperatures up to $450^{\circ}C$: the effects of heating temperatures and testing situations (hot and cold)", Mag. Concr. Res., 58(5), 277-288. https://doi.org/10.1680/macr.2006.58.5.277
  38. Zhang, B., Bicanic, N., Pearce, C.J. and Phillips, D.V. (2002), "Relationship between brittleness and moisture loss of concrete exposed to high temperatures", Cement Concrete Res., 32(3), 363-371. https://doi.org/10.1016/S0008-8846(01)00684-6
  39. Zhang, B., Bicanic, N., Pearce, C.J. and Balabanic, G. (2000), "Assessment of toughness of concrete subjected to elevated temperatures from complete load-displacement curve- Part I: General introduction", ACI Mater., 97(5), 550-555.
  40. Zhang, B., Bicanic, N., Pearce, C.J. and Balabanic, G. (2000), "Assessment of toughness of concrete subjected to elevated temperatures from complete load-displacement curve- Part II: Experimental Investigation", ACI Mater., 97(5), 556-566.

Cited by

  1. Depth-dependent evaluation of residual material properties of fire-damaged concrete vol.20, pp.4, 2017, https://doi.org/10.12989/cac.2017.20.4.503
  2. The discrete element method simulation and experimental study of determining the mode I stress-intensity factor vol.66, pp.3, 2018, https://doi.org/10.12989/sem.2018.66.3.379
  3. Relationship between point load index and mode II fracture toughness of granite vol.28, pp.1, 2021, https://doi.org/10.12989/cac.2021.28.1.025