DOI QR코드

DOI QR Code

Development of Manual Multi-Leaf Collimator for Proton Therapy in National Cancer Center

국립암센터의 양성자 치료를 위한 수동형 다엽 콜리메이터 개발

  • 이누리 (국립암센터 양성자치료센터) ;
  • 김태윤 (국립암센터 양성자치료센터) ;
  • 강동윤 (국립암센터 양성자치료센터) ;
  • 최재혁 (국립암센터 양성자치료센터) ;
  • 정종휘 (국립암센터 양성자치료센터) ;
  • 신동호 (국립암센터 양성자치료센터) ;
  • 임영경 (국립암센터 양성자치료센터) ;
  • 박정훈 (국립암센터 양성자치료센터) ;
  • 김태현 (국립암센터 양성자치료센터) ;
  • 이세병 (국립암센터 양성자치료센터)
  • Received : 2015.12.01
  • Accepted : 2015.12.22
  • Published : 2015.12.31

Abstract

Multi-leaf collimator (MLC) systems are frequently used to deliver photon-based radiation, and allow conformal shaping of treatment beams. Many proton beam centers currently make use of aperture and snout systems, which involve use of a snout to shape and focus the proton beam, a brass aperture to modify field shape, and an acrylic compensator to modulate depth. However, it needs a lot of time and cost of preparing treatment, therefore, we developed the manual MLC for solving this problem. This study was carried out with the intent of designing an MLC system as an alternative to an aperture block system. Radio-activation and dose due to primary proton beam leakage and the presence of secondary neutrons were taken into account during these iterations. Analytical calculations were used to study the effects of leaf material on activation. We have fabricated tray model for adoption with a wobbling snout ($30{\times}40cm^2$) system which used uniform scanning beam. We designed the manual MLC and tray and can reduce the cost and time for treatment. After leakage test of new tray, we upgrade the tray with brass and made the safety tool. First, we have tested the radio-activation with usually brass and new brass for new manual MLC. It shows similar behavior and decay trend. In addition, we have measured the leakage test of a gantry with new tray and MLC tray, while we exposed the high energy with full modulation process on film dosimetry. The radiation leakage is less than 1%. From these results, we have developed the design of the tray and upgrade for safety. Through the radio-activation behavior, we figure out the proton beam leakage level of safety, where there detects the secondary particle, including neutron. After developing new design of the tray, it will be able to reduce the time and cost of proton treatment. Finally, we have applied in clinic test with original brass aperture and manual MLC and calculated the gamma index, 99.74% between them.

양성자 치료를 위해서는 Snout이 부착된 받침대(gantry)를 사용하는데 빔의 형태를 만들기 위해 환자 종양의 크기와 거리에 맞게 황동 차폐체(aperture)가 많이 사용된다. 또한 빔의 거리를 보정하기 위해 PMMA를 이용한 거리 보상체도 사용된다. 이렇게 황동으로 만들어진 차폐체의 경우 가공하는데 많은 시간이 소요되며 비용 발생이 높다. 또한 치료 사용되었던 차폐체의 방사선 노출에 따라 재사용이 어렵다. 이러한 단점을 보안하기 위해 황동 차폐체 대신 X-선 치료에서 사용되는 수동형 다엽 콜리메이터 시스템을 도입하였다. 수동형 다업 콜리메이터는 여러 개의 황동판을 조립하여 차폐체를 제작하는 방식이다. 본 연구는 제작된 수동형 다엽 콜리메이터의 방사화 실험 및 필름을 이용해 선량측정을 진행하였다. 다엽 콜리메이터를 투과한 2차 발생 선량 1% 이하였으며, 여러 번의 230 MeV의 빔에서도 방사화가 2시간 이내에서 감소하였다. 이렇게 개발된 수동형 다엽 콜리메이터를 임상에 적용하여 일반 차폐체와 수동형 다엽 콜리메이터를 감마지표 분석을 했을 시 99.74%의 높은 일치도가 측정되었다. 또한, 일반 황동 차폐체에 비해 수동형 다엽 콜리메이터를 제작하는데 소요되는 비용과 시간을 1/10 이상 단축시킬 수 있다. 개발된 수동형 다엽 콜리메이터는 성공적으로 양성자 환자치료에 사용하고 있다.

Keywords

References

  1. Arzt L, Ralston S: Proton Foundation 2011 Survey Reveals 32% Increase in Pediatric Cases Treated at U.S. Proton Centers. Virgnia beach, VA PRWEB, September 19 (2012)
  2. Khan FM, Gibbons JP: The Physics of Radiation Therapy. 5th ed, Wolters Kluwer, Philadelphia, PA (2014), pp. 524
  3. Hong CS, Lim J, Ju SG, Shin E, Han Y, Ahn YC: Comparison of the efficacy of 2D dosimetry systems in the pretreatment verification of IMRT. Radiation Oncology Journal, 27(2): 91-102 (2009) https://doi.org/10.3857/jkstro.2009.27.2.91
  4. Galvin JM: The Multileaf collimator - a complete guide. 41st AAPM: 2787-9625 (1999)
  5. Lee JS, Kim JN: Efficient data acquisition technique for clinical application of multi-leaf collimator. The Journal of the Korea Contests Association 8(11):182-188 (2008)
  6. Mckenna WG et al.: Development of a multileaf collimator for Proton radiotherapy. Defense Technical Information Center. Fort Belvoir, VA (2005)
  7. Farr JB, Mauqhan RL, Yudelev M, Blosser E, Brandon J, Hprste T, Forman JD: Compact multileaf collimator for conformal and intensity modulated fast neutron therapy: electrometechenical design and validation. Med Phys 33(9):3313-3320 (2006) https://doi.org/10.1118/1.2237506
  8. Moskvin V, Cheng CW, Das IJ: Pitfalls of tungsten multileaf collimator in proton beam therapy. Med Phys 38(12):6395-6406 (2011) https://doi.org/10.1118/1.3658655
  9. Dartz J, Maughan RL, and Orton CG: The disadvantages of a multileaf collimator for proton radiotherapy outweigh its advantages. Med Phys 41(2):020601 (2014) https://doi.org/10.1118/1.4824437
  10. Tsunemoto H, Morita S, Ishikawa T, Furukawa S, Kawachi K, Kanai T, Ohara H, Kitagawa T, and Inada T: Proton therapy in Japan. Radiation Research-Official Journal of the Radiation Research Society 104(2):X234-S243 (1985)
  11. Agosteo S, Birattari C, Caravaggioc M, Silarid M, Tosi G: Secondary neutron and photon dose in proton therapy. Radiation and Oncology 48(3):293-305 (1998) https://doi.org/10.1016/S0167-8140(98)00049-8
  12. Brenner DJ, Elliston CD, Hall EJ, and Raganetti H: Reduction of the secondary neutron dose in passively scattered proton radiotherapy, using an optimized pre-collimator/collimator. Phys Med Biol 54:6065-6078 (2009) https://doi.org/10.1088/0031-9155/54/20/003
  13. Kim DW, Chung WK, Shin J, Lim TK, Shin D, Lee SB, Yoon M, Park SY, Shin DO, Cho JK: Secondary neutron dose measurement for proton eye treatment using an eye snout with a borated neutron absorber. Radiation Oncology 8:182 (2013) https://doi.org/10.1186/1748-717X-8-182
  14. Lee SH, Shin DH, Yoon M, Shin J, Rah JE, Kwak J, Park SY, Shin KH, Lee DH, Ahn SH, Kim DY, Cho KH, Lee SB: A study of radiation exposure in proton therapy facility. Progress in Medical Physics 20:37-42 (2009)
  15. Lee SH, Cho SK, You SH, Shin DH, Park SY, Lee SB: Evaluation of Radioactivity Induced by Patient-specific Devices in Proton therapy. J Kor Phys Soc. 60(1): 125-128 (2012) https://doi.org/10.3938/jkps.60.125
  16. Vatnitsky SM: Radiachromic film dosimetry for clinical proton beams. Appl. Radiat. Isot. 48(5):643-651 (1997) https://doi.org/10.1016/S0969-8043(97)00342-4
  17. Niroomand-Rad A, Blackwell CR, Coursey BM, Gall KP, Galvin JM, McLaughlin WL, Meigooni AS, Nath R, Rodgers JE, Soares CG: Radiochromic film dosimetry: Recommendations of AAPM radiation therapy committee task group 55. Med. Phys. 25(11):2093-2115 (1998) https://doi.org/10.1118/1.598407

Cited by

  1. Development of beam monitoring system for proton pencil beam scanning using fiber-optic radiation sensor vol.71, pp.7, 2017, https://doi.org/10.3938/jkps.71.438
  2. Report of AAPM Task Group 235 Radiochromic Film Dosimetry: An Update to TG‐55 vol.47, pp.12, 2015, https://doi.org/10.1002/mp.14497