DOI QR코드

DOI QR Code

Ignition Temperature and Residence Time of Suspended Magnesium Particles

마그네슘 부유 분진의 입자 체류시간과 발화온도

  • Han, Ou-Sup (Occupational Safety & Health Research Institute, KOSHA)
  • 한우섭 (한국산업안전보건공단 산업안전보건연구원)
  • Received : 2015.05.07
  • Accepted : 2015.06.08
  • Published : 2015.06.28

Abstract

Effects of residence time on the MIT(Minimum Ignition Temperature) in suspended Mg particles are examined by using MIT experimental data and calculation results of terminal velocity. With increasing of the average particle diameter, we were able to identify that MIT of Mg dusts increased and the calculated residence time of particle decreased exponentially. Also, the influence on terminal velocity due to temperature increase increased slightly with increasing of average particle diameter.

본 연구에서는 부유 Mg분진의 최소발화온도(MIT)에 있어서 입자 체류시간이 어떠한 영향을 주는지를 실험자료와 입자속도의 계산결과를 사용하여 조사하였다. 평균입경이 증가하면 Mg분진의 MIT는 증가하는 반면에 입자 체류시간(Residence time)은 지수함수적으로 감소하여 분진의 발화 가능성이 저하되는 요인이 될 수 있음을 계산을 통해 확인할 수 있었다. 또한 온도증가에 의한 입자속도에의 영향은 평균입경이 클수록 미세하지만 증가하는 결과가 얻어졌다.

Keywords

References

  1. Eckhoff, R. K., Dust Explosions in the process industries (3rd ed.), Amsterdam: Gulf Professional Publishing (2003)
  2. Palmer, K. N., Dust explosions and fires. London: Chapman and Hall, 42-111 (1973)
  3. IEC 61241-2-1-1994, Methods for Determining the Minimum Ignition Temperatures of Dust. Part 2: Dust Cloud in a Furnace at a Constant Temperature, Central Office of International Electrotechnical Commission, Geneva, Switzerland, 11-27 (1994)
  4. M. Mittal, B.K. Guha, Study of ignition temperature of a polyethylene dust cloud, Fire Mater., 20, 97-105 (1996) https://doi.org/10.1002/(SICI)1099-1018(199603)20:2<97::AID-FAM568>3.0.CO;2-L
  5. U. Krause, M. Wappler, S. Radzewitz, F. Ferrero, On the minimum ignition temperature of dust clouds, in: Proceedings of Sixth International Symposium on Hazards, Prevention, and Mitigation of Industrial Explosion, vol. I, Dalhousie University, Halifax, NS, Canada, August 27.September 1, 68-76 (2006)
  6. M. Mittal, B.K. Guha, Study of ignition temperature of a polyethylene dust cloud, Fire Mater., 20, 97-105 (1996) https://doi.org/10.1002/(SICI)1099-1018(199603)20:2<97::AID-FAM568>3.0.CO;2-L
  7. M. Mittal, B.K. Guha, Models for minimum ignition temperature of organic dust clouds, Chem. Eng. Technol., 20, 53-62 (1997) https://doi.org/10.1002/ceat.270200111
  8. G. Li, C.M. Yuan, P.H. Zhang, B.Z. Chen, Experiment- based fire and explosion risk analysis for powdered magnesium production methods, J. Loss Prev. Process Ind. 21, 461-465, (2008)
  9. M. Nifuku, S. Koyanaka, H. Ohya, C. Barre, M. Hatori, S. Fujiwara, S. Horiguchi, I. Sochet, Ignitability characteristics of aluminium and magnesium dusts that are generated during the shredding of post-consumer wastes, J. Loss Prev. Process Ind., 20, 322-329 (2007) https://doi.org/10.1016/j.jlp.2007.04.034
  10. Han, O.S., Lee, J.S., Characteristic of Thermal Decomposition and Ignition Temperature of Magnesium Particles, KIGAS, 17(5), 69-74 (2013)
  11. Almedeij J. Drag coefficient of flow around a sphere : matching asymptotically the wide trend, Powder Technol, 186(3), 218-223 (2008) https://doi.org/10.1016/j.powtec.2007.12.006
  12. Concha F., Settling velocities of particulate system, J. Powder Particle, 27, 18-37 (2009) https://doi.org/10.14356/kona.2009006
  13. Gultieri C, Mihailovic DT. Fluid mechanics of environmental interfaces, Florida: Taylor & Francis; (2012)
  14. National Astronomical Observatory, Rika Nenpyo (Chronological Scientific Tables), 87th ed., Maru-zen, Tokyo (2014)