DOI QR코드

DOI QR Code

Screening and Identification of Antigenic Proteins from the Hard Tick Dermacentor silvarum (Acari: Ixodidae)

  • Zhang, Tiantian (Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University) ;
  • Cui, Xuejiao (Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University) ;
  • Zhang, Jincheng (Shijiazhuang Post and Telecommunication Technical College) ;
  • Wang, Hui (Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University) ;
  • Wu, Meng (Laboratory of Cell and Biochemistry, Institute of Biology, Hebei Academy of Sciences) ;
  • Zeng, Hua (Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University) ;
  • Cao, Yuanyuan (Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University) ;
  • Liu, Jingze (Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University) ;
  • Hu, Yonghong (Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University)
  • Received : 2015.07.31
  • Accepted : 2015.10.17
  • Published : 2015.12.31

Abstract

In order to explore tick proteins as potential targets for further developing vaccine against ticks, the total proteins of unfed female Dermacentor silvarum were screened with anti-D. silvarum serum produced from rabbits. The results of western blot showed that 3 antigenic proteins of about 100, 68, and 52 kDa were detected by polyclonal antibodies, which means that they probably have immunogenicity. Then, unfed female tick proteins were separated by 12% SDS-PAGE, and target proteins (100, 68, and 52 kDa) were cut and analyzed by LC-MS/MS, respectively. The comparative results of peptide sequences showed that they might be vitellogenin (Vg), heat shock protein 60 (Hsp60), and fructose-1, 6-bisphosphate aldolase (FBA), respectively. These data will lay the foundation for the further validation of antigenic proteins to prevent infestation and diseases transmitted by D. silvarum.

Keywords

References

  1. Ahmed J, Alp H, Aksin M, Seitzer U. Current status of ticks in Asia. Parasitol Res 2007; 101: S159-S162. https://doi.org/10.1007/s00436-007-0696-3
  2. Davey RB, George JE, Miller RJ. Comparison of the reproductive biology between acaricide-resistant and acaricide-susceptible Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Vet Parasitol 2006; 139: 211-220. https://doi.org/10.1016/j.vetpar.2006.02.027
  3. Nuttall PA, Trimnell AR, Kazimirova M, Labuda M. Exposed and concealed antigens as vaccine targets for controlling ticks and tick-borne diseases. Parasite Immunol 2006; 28: 155-163. https://doi.org/10.1111/j.1365-3024.2006.00806.x
  4. Willadsen P, Riding GA, Mckenna RV, Kemp DH, Tellam RL, Nielsen JN, Lahnstein J, Cobon GS, Gough JM. Immunologic control of a parasitic arthropod: identification of a protective antigen from Boophilus microplus. J Immunol 1989; 143: 1346-1351.
  5. Galay RL, Miyata T, Umemiya-Shirafuji R, Maeda H, Kusakisako K, Tsuji N, Mochizuki M, Fujisaki K, Tanaka T. Evaluation and comparison of the potential of two ferritins as anti-tick vaccines against Haemaphysalis longicornis. Parasit Vectors 2014; 7: 482. https://doi.org/10.1186/s13071-014-0482-x
  6. Kim YH, Slam MS, You MJ. Proteomic screening of antigenic proteins from the hard tick, Haemaphysalis longicornis (Acari: Ixodidae). Korean J Parasitol 2015; 53: 85-93. https://doi.org/10.3347/kjp.2015.53.1.85
  7. Hu Y, Zhang J, Yang S, Wang H, Zeng H, Zhang T, Liu J. Screening and molecular cloning of a protective antigen from the midgut of Haemaphysalis longicornis. Korean J Parasitol 2013; 51: 327-334. https://doi.org/10.3347/kjp.2013.51.3.327
  8. Yu Z, Zheng H, Chen Z, Zheng B, Ma H, Liu J. The life cycle and biological characteristics of Dermacentor silvarum Olenev (Acari: Ixodidae) under field conditions. Vet Parasitol 2010; 168: 323-328. https://doi.org/10.1016/j.vetpar.2009.11.010
  9. Hu Y, Zeng H, Zhang J, Wang D, Li D, Zhang T, Yang S, Liu J. Gene cloning, expression and immunogenicity of the protective antigen subolesin in Dermacentor silvarum. Korean J Parasitol 2014; 52: 93-97. https://doi.org/10.3347/kjp.2014.52.1.93
  10. Liu J, Liu Z, Zhang Y, Yang X, Gao Z. Biology of Dermacentor silvarum (Acari: Ixodidae) under laboratory conditions. Exp Appl Acarol 2005; 36: 131-138. https://doi.org/10.1007/s10493-005-1271-1
  11. Madani R, Golchinfar F, Dadmehr A, Abdigoudarzi M. Preparation of antigens from midgut of Hyalomma anatolicum anatolicum and determining their immunoprotective effects. Arch Razi Institute 2009; 63: 47-52.
  12. Raikhel AS, Dhadialla TS. Accumulation of yolk proteins in insect oocytes. Annu Rev Entomol 1992; 37: 217-251. https://doi.org/10.1146/annurev.en.37.010192.001245
  13. Sappington TW, Raikhel AS. Molecular characteristics of insect vitellogenins and vitellogenin receptors. Insect Biochem Mol Biol 1998; 28: 277-300. https://doi.org/10.1016/S0965-1748(97)00110-0
  14. Li Z, Zhang S, Zhang J, Liu M, Liu Z. Vitellogenin is a cidal factor capable of killing bacteria via interaction with lipopolysaccharide and lipoteichoic acid. Mol Immunol 2009; 46: 3232-3239. https://doi.org/10.1016/j.molimm.2009.08.006
  15. Tellam RL, Kemp D, Riding G, Briscoe S, Smith D, Sharp P, Irving D, Willadsen P. Reduced oviposition of Boophilus microplus feeding on sheep vaccinated with vitellin. Vet Parasitol 2002; 103: 141-156. https://doi.org/10.1016/S0304-4017(01)00573-8
  16. Chinzei Y, Minoura H. Reduced oviposition in Ornithodoros moubata (Acari: Argasidae) fed on tick-sensitized and vitellin-immunized rabbits. J Med Entomol 1988; 25: 26-31. https://doi.org/10.1093/jmedent/25.1.26
  17. Gudderra NP, Sonenshine DE, Apperson CS, Roe RM. Haemolymph proteins in ticks. J Insect Physiol 2002; 48: 269-278. https://doi.org/10.1016/S0022-1910(02)00050-1
  18. Georgopoulos C, Welch W. Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 1993; 9: 601-634. https://doi.org/10.1146/annurev.cb.09.110193.003125
  19. Martin J, Horwich AL, Hartl FU. Prevention of protein denaturation under heat stress by the chaperonin Hsp60. Science 1992; 258: 995-998. https://doi.org/10.1126/science.1359644
  20. More SH, Breloer M, von Bonin A. Eukaryotic heat shock proteins as molecular links in innate and adaptive immune responses: Hsp60-mediated activation of cytotoxic T cells. Int Immunol 2001; 13: 1121-1127. https://doi.org/10.1093/intimm/13.9.1121
  21. Ben Nouir N, Piedavent M, Osterloh A, Breloer M. Passive immunization with a monoclonal IgM antibody specific for Strongyloides ratti HSP60 protects mice against challenge infection. Vaccine 2012; 30: 4971-4976. https://doi.org/10.1016/j.vaccine.2012.05.046
  22. Yang P, Wang W, Gu H, Li Z, Zhang K, Wang Z, Li R, Duan Y, Zhang S, Wang X. Protection against influenza H7N9 virus challenge with a recombinant NP-M1-HSP60 protein vaccine construct in BALB/c mice. Antiviral Res 2014; 111: 1-7. https://doi.org/10.1016/j.antiviral.2014.08.008
  23. Zhang L, Guo Z, Huang J, Liu M, Wang Y, Ji C. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of fructose-1,6-bisphosphate aldolase from Escherichia coli. Acta Crystallogr F Struct Biol Commun 2014; 70: 1376-1379. https://doi.org/10.1107/S2053230X14018408
  24. Ling E, Feldman G, Portnoi M, Dagan R, Overweg K, Mulholland F, Chalifa-Caspi V, Wells J, Mizrachi-Nebenzahl Y. Glycolytic enzymes associated with the cell surface of Streptococcus pneumoniae are antigenic in humans and elicit protective immune responses in the mouse. Clin Exp Immunol 2004; 138: 290-298. https://doi.org/10.1111/j.1365-2249.2004.02628.x
  25. Shams F, Oldfield NJ, Wooldridge KG, Turner DP. Fructose-1,6-bisphosphate aldolase (FBA)-a conserved glycolytic enzyme with virulence functions in bacteria: 'ill met by moonlight'. Biochem Soc Trans 2014; 42: 1792-1795. https://doi.org/10.1042/BST20140203

Cited by

  1. New approaches and omics tools for mining of vaccine candidates against vector-borne diseases vol.12, pp.9, 2016, https://doi.org/10.1039/c6mb00268d
  2. Extracellular vesicles induce protective immunity against Trichuris muris vol.40, pp.7, 2015, https://doi.org/10.1111/pim.12536