DOI QR코드

DOI QR Code

Pathological Lesions and Inducible Nitric Oxide Synthase Expressions in the Liver of Mice Experimentally Infected with Clonorchis sinensis

  • Yang, Qing-Li (National Institute of Parasitic Disease, Chinese Center for Disease Control and Prevention/ Key Laboratory of Parasite and Vector Biology, Ministry of Health/ WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis) ;
  • Shen, Ji-Qing (Department of Parasitology, Guangxi Medical University) ;
  • Xue, Yan (Department of Parasitology, Guangxi Medical University) ;
  • Cheng, Xiao-Bing (Department of Parasitology, Guangxi Medical University) ;
  • Jiang, Zhi-Hua (Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control/ Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis) ;
  • Yang, Yi-Chao (Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control/ Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis) ;
  • Chen, Ying-Dan (National Institute of Parasitic Disease, Chinese Center for Disease Control and Prevention/ Key Laboratory of Parasite and Vector Biology, Ministry of Health/ WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis) ;
  • Zhou, Xiao-Nong (National Institute of Parasitic Disease, Chinese Center for Disease Control and Prevention/ Key Laboratory of Parasite and Vector Biology, Ministry of Health/ WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis)
  • Received : 2015.01.14
  • Accepted : 2015.08.24
  • Published : 2015.12.31

Abstract

The nitric oxide (NO) formation and intrinsic nitrosation may be involved in the possible mechanisms of liver fluke-associated carcinogenesis. We still do not know much about the responses of inducible NO synthase (iNOS) induced by Clonorchis sinensis infection. This study was conducted to explore the pathological lesions and iNOS expressions in the liver of mice with different infection intensity levels of C. sinensis. Extensive periductal inflammatory cell infiltration, bile duct hyperplasia, and fibrosis were commonly observed during the infection. The different pathological responses in liver tissues strongly correlated with the infection intensity of C. sinensis. Massive acute spotty necrosis occurred in the liver parenchyma after a severe infection. The iNOS activity in liver tissues increased, and iNOS-expressing cells with morphological differences were observed after a moderate or severe infection. The iNOS-expressing cells in liver tissues had multiple origins.

Keywords

References

  1. Rim H J. Clonorchiasis: an update. J Helminthol 2005; 79: 269-281. https://doi.org/10.1079/JOH2005300
  2. Hong ST, Fang Y. Clonorchis sinensis and clonorchiasis, an update. Parasitol Int 2012; 61: 17-24. https://doi.org/10.1016/j.parint.2011.06.007
  3. Qian MB, Chen YD, Liang S, Yang GJ, Zhou XN. The global epidemiology of clonorchiasis and its relation with cholangiocarcinoma. Infect Dis Poverty 2012. doi: 10.1186/2049-9957-1-4.
  4. Lun ZR, Gasser RB, Lai DH, Li AX, Zhu XQ, Yu XB, Fang YY. Clonorchiasis: a key foodborne zoonosis in China. Lancet Infect Dis 2005; 5: 31-41. https://doi.org/10.1016/S1473-3099(04)01252-6
  5. Choi BI, Han JK, Hong ST, Lee KH. Clonorchiasis and cholangiocarcinoma: etiologic relationship and imaging diagnosis. Clin Microbiol Rev 2004; 17: 540-552. https://doi.org/10.1128/CMR.17.3.540-552.2004
  6. Sithithaworn P, Yongvanit P, Duenngai K, Kiatsopit N, Pairojkul C. Roles of liver fluke infection as risk factor for cholangiocarcinoma. J Hepatobiliary Pancreat Sci 2014; 21: 301-308. https://doi.org/10.1002/jhbp.62
  7. Watanapa P, Watanapa WB. Liver fluke-associated cholangiocarcinoma. Br J Surg 2002; 89: 962-970. https://doi.org/10.1046/j.1365-2168.2002.02143.x
  8. Lirk P, Hoffmann G, Rieder J. Inducible nitric oxide synthase-time for reappraisal. Curr Drug Targets Inflamm Allergy 2002; 1: 89-108. https://doi.org/10.2174/1568010023344913
  9. Lechner M, Lirk P, Rieder J. Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin Cancer Biol 2005; 15: 277-289. https://doi.org/10.1016/j.semcancer.2005.04.004
  10. Janakiram NB, Rao CV. iNOS-selective inhibitors for cancer prevention: promise and progress. Future Med Chem 2012; 4: 2193-2204. https://doi.org/10.4155/fmc.12.168
  11. Green SJ, Scheller LF, Marletta MA, Seguin MC, Klotz FW, Slayter M, Nelson BJ, Nacy CA. Nitric oxide: cytokine-regulation of nitric oxide in host resistance to intracellular pathogens. Immunol Lett 1994; 43: 87-94. https://doi.org/10.1016/0165-2478(94)00158-8
  12. Boczon K, Wandurska-Nowak E, Wierzbicki A, Frydrychowicz M, Mozer-Lisewska I, Zeromski J. mRNA expression and immunohistochemical localization of inducible nitric oxide synthase (NOS-2) in the muscular niche of Trichinella spiralis. Folia Histochem Cytobiol 2004; 42: 209-213.
  13. Zeromski J, Boczon K, Wandurska-Nowak E, Mozer-Lisewska I. Effect of aminoguanidine and albendazole on inducible nitric oxide synthase (iNOS) activity in T. spiralis-infected mice muscles. Folia Histochem Cytobiol 2005; 43: 157-159.
  14. Demirci C, Gargili A, Kandil A, Cetinkaya H, Uyaner I, Boynuegri B, Gumustas MK. Inhibition of inducible nitric oxide synthase in murine visceral larva migrans: effects on lung and liver damage. Chin J Physiol 2006; 49: 326-334.
  15. Fan CK, Lin YH, Hung CC, Chang SF, Su KE. Enhanced inducible nitric oxide synthase expression and nitrotyrosine accumulation in experimental granulomatous hepatitis caused by Toxocara canis in mice. Parasite Immunol 2004; 26: 273-281. https://doi.org/10.1111/j.0141-9838.2004.00708.x
  16. Li RW, Li C, Gasbarre LC. The vitamin D receptor and inducible nitric oxide synthase associated pathways in acquired resistance to Cooperia oncophora infection in cattle. Vet Res 2011; 42: 48. doi:10.1186/1297-9716-42-48.
  17. Dai WJ, Gottstein B. Nitric oxide-mediated immunosuppression following murine Echinococcus multilocularis infection. Immunology 1999; 97: 107-116. https://doi.org/10.1046/j.1365-2567.1999.00723.x
  18. Dai WJ, Waldvogel A, Jungi T, Stettler M, Gottstein B. Inducible nitric oxide synthase deficiency in mice increases resistance to chronic infection with Echinococcus multilocularis. Immunology 2003; 108: 238-244. https://doi.org/10.1046/j.1365-2567.2003.01567.x
  19. Soufli I, Toumi R, Rafa H, Amri M, Labsi M, Khelifi L, Nicoletti F, Touil-Boukoffa C. Crude extract of hydatid laminated layer from Echinococcus granulosus cyst attenuates mucosal intestinal damage and inflammatory responses in Dextran Sulfate Sodium induced colitis in mice. J Inflamm 2015; 12:19. doi: 10.1186/s12950-015-0063-6.
  20. Yang Q, Shen J, Jiang Z, Yang Y, Li H, Chen Y, Zhou X. Differentiation of Clonorchis sinensis metacercariae using PCR targeting ribosomal DNA ITS regions and COX1 gene. Chin J Parasitol Parasit Dis (in Chinese) 2014; 32: 217-220.
  21. Choi YK, Yoon BI, Won YS, Lee CH, Hyun BH, Kim HC, Oh GT, Kim DY. Cytokine responses in mice infected with Clonorchis sinensis. Parasitol Res 2003; 91: 87-93. https://doi.org/10.1007/s00436-003-0934-2
  22. Fu LL, Li Y, Liu YS, Tang RX, Du WP, Zheng KY, Xiao YS, Guo QQ, Dai QF. Establishment and comparison on mice model of Clonorchis sinensis. J Pathogen Biol (in Chinese) 2008; 3: 46-48.
  23. Sohn WM, Zhang H, Choi MH, Hong ST. Susceptibility of experimental animals to reinfection with Clonorchis sinensis. Korean J Parasitol 2006; 44: 163-166. https://doi.org/10.3347/kjp.2006.44.2.163
  24. Qian MB, Yap P, Yang YC, Liang H, Jiang ZH, Li W, Utzinger J, Zhou XN, Keiser J. Accuracy of the Kato–Katz method and formalin–ether concentration technique for the diagnosis of Clonorchis sinensis, and implication for assessing drug efficacy. Parasit Vectors 2013; 6: 314-319. https://doi.org/10.1186/1756-3305-6-314
  25. Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J 2012; 33: 829-837. https://doi.org/10.1093/eurheartj/ehr304
  26. Yang Q, Wei P, Chen H. Cytokine responses and inducible nitrous oxide synthase expression patterns in neonatal chicken brain microglia infected with very virulent Marek's disease virus strain YL040920. Vet Immunol Immunopathol 2011; 142: 14-24. https://doi.org/10.1016/j.vetimm.2011.03.021
  27. Lukacs-Kornek V, Schuppan D. Dendritic cells in liver injury and fibrosis: shortcomings and promises. J Hepatol 2013; 59: 1124-1126. https://doi.org/10.1016/j.jhep.2013.05.033
  28. Bilzer M, Roggel F, Gerbes AL. Role of Kupffer cells in host defense and liver disease. Liver Int 2006; 26: 1175-1186. https://doi.org/10.1111/j.1478-3231.2006.01342.x
  29. Wen SW, Ager EI, Christophi C. Bimodal role of Kupffer cells during colorectal cancer liver metastasis. Cancer Biology & Therapy 2013; 14: 606-613. https://doi.org/10.4161/cbt.24593
  30. Shiratori Y, Ohmura K, Hikiba Y, Matsumura M, Nagura T, Okano K, Kamii K, Omata M. Hepatocyte nitric oxide production is induced by Kupffer cells. Dig Dis Sci 1998; 43: 1737-1746. https://doi.org/10.1023/A:1018879502520
  31. Valatas V, Kolios G, Manousou P, Xidakis C, Notas G, Ljumovic D, Kouroumalis EA. Secretion of inflammatory mediators by isolated rat Kupffer cells: the effect of octreotide. Regul Pept 2004; 120: 215-225. https://doi.org/10.1016/j.regpep.2004.03.009
  32. Nahrevanian H. Involvement of nitric oxide and its up/down stream molecules in the immunity against parasitic infections. Braz J Infect Dis 2009; 13: 440-448. https://doi.org/10.1590/S1413-86702009000600010
  33. Ozen H, Kamber U, Karaman M, Gul S, Atakisi E, Ozcan K, Atakisi O. Histopathologic, biochemical and genotoxic investigations on chronic sodium nitrite toxicity in mice. Exp Toxicol Pathol 2014; 66: 367-375. https://doi.org/10.1016/j.etp.2014.05.003
  34. Abou-Elella AM, Siendones E, Padillo J, Montero JL, De la Mata M, Muntane Relat J. Tumour necrosis factor-alpha and nitric oxide mediate apoptosis by D-galactosamine in a primary culture of rat hepatocytes: exacerbation of cell death by cocultured Kupffer cells. Can J Gastroenterol 2002; 16: 791-799. https://doi.org/10.1155/2002/986305
  35. Yang Q, Shi Y, He J, Chen Z. The evolving story of macrophages in actte liver failure. Immunol Lett 2012; 147: 1-9. https://doi.org/10.1016/j.imlet.2012.07.002
  36. Yang Q, Shen J. Pathogen associate molecular patterns of parasites. Chin J Parasitol Parasit Dis (in Chinese) 2013; 31: 238-241.
  37. Pak JH, Moon JH, Hwang SJ, Cho SH, Seo SB, Kim TS. Proteomic analysis of differentially expressed proteins in human cholangiocarcinoma cells treated with Clonorchis sinensis excretory-secretory products. J Cell Biochem 2009; 108: 1376-1388. https://doi.org/10.1002/jcb.22368
  38. Nam JH, Moon JH, Kim IK, Lee MR, Hong SJ, Ahn JH, Chung JW, Pak JH. Free radicals enzymatically triggered by Clonorchis sinensis excretory-secretory products cause NF-${\kappa}B$-mediated inflammation in human cholangiocarcinoma cells. Int J Parasitol 2012; 42: 103-113. https://doi.org/10.1016/j.ijpara.2011.11.001

Cited by

  1. Clonorchis sinensis, an oriental liver fluke, as a human biological agent of cholangiocarcinoma: a brief review vol.49, pp.11, 2016, https://doi.org/10.5483/bmbrep.2016.49.11.109
  2. Current status and perspectives of Clonorchis sinensis and clonorchiasis: epidemiology, pathogenesis, omics, prevention and control vol.5, pp.1, 2015, https://doi.org/10.1186/s40249-016-0166-1
  3. Increased hepatic Th2 and Treg subsets are associated with biliary fibrosis in different strains of mice caused by Clonorchis sinensis vol.12, pp.2, 2017, https://doi.org/10.1371/journal.pone.0171005
  4. TLR2 signal influences the iNOS/NO responses and worm development in C57BL/6J mice infected with Clonorchis sinensis vol.10, pp.1, 2015, https://doi.org/10.1186/s13071-017-2318-y
  5. Molecular characteristics and induction profiles of hypoxia-inducible factor-1αand other basic helix-loop-helix and Per-Arnt-Sim domain-containing proteins identified in a carcinogenic liver flu vol.146, pp.2, 2015, https://doi.org/10.1017/s0031182018001245
  6. Interplay between proinflammatory cytokines, miRNA, and tissue lesions in Anisakis -infected Sprague-Dawley rats vol.13, pp.5, 2015, https://doi.org/10.1371/journal.pntd.0007397
  7. Hypoxic and nitrosative stress conditions modulate expression of myoglobin genes in a carcinogenic hepatobiliary trematode, Clonorchis sinensis vol.15, pp.9, 2015, https://doi.org/10.1371/journal.pntd.0009811