DOI QR코드

DOI QR Code

Sequence Diversity in MIC6 Gene among Toxoplasma gondii Isolates from Different Hosts and Geographical Locations

  • Li, Zhong-Yuan (State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Song, Hui-Qun (State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Chen, Jia (State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Zhu, Xing-Quan (State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences)
  • Received : 2014.12.19
  • Accepted : 2015.02.08
  • Published : 2015.06.30

Abstract

Toxoplasma gondii is an opportunistic protozoan parasite that can infect almost all warm-blooded animals including humans with a worldwide distribution. Micronemes play an important role in invasion process of T. gondii, associated with the attachment, motility, and host cell recognition. In this research, sequence diversity in microneme protein 6 (MIC6) gene among 16 T. gondii isolates from different hosts and geographical regions and 1 reference strain was examined. The results showed that the sequence of all the examined T. gondii strains was 1,050 bp in length, and their A + T content was between 45.7% and 46.1%. Sequence analysis presented 33 nucleotide mutation positions (0-1.1%), resulting in 23 amino acid substitutions (0-2.3%) aligned with T. gondii RH strain. Moreover, T. gondii strains representing the 3 classical genotypes (Type I, II, and III) were separated into different clusters based on the locus of MIC6 using phylogenetic analyses by Bayesian inference (BI), maximum parsimony (MP), and maximum likelihood (ML), but T. gondii strains belonging to ToxoDB #9 were separated into different clusters. Our results suggested that MIC6 gene is not a suitable marker for T. gondii population genetic studies.

Keywords

References

  1. Montoya JG, Liesenfeld O. Toxoplasmosis. Lancet 2004; 363: 1965-1976. https://doi.org/10.1016/S0140-6736(04)16412-X
  2. Schluter D, Daubener W, Schares G, Gross U, Pleyer U, Luder C. Animals are key to human toxoplasmosis. Int J Med Microbiol 2014; 304: 917-929. https://doi.org/10.1016/j.ijmm.2014.09.002
  3. Kim K, Weiss LM. Toxoplasma: the next 100 years. Microbes Infect 2008; 10: 978-984. https://doi.org/10.1016/j.micinf.2008.07.015
  4. Amin A, Mazloomzadeh S, Haniloo A, Mohammadian F, Fazaeli A. Evaluation of anti-Toxoplasma IgG, IgM, and IgA in mothers with spontaneous abortion in Zanjan, Northwest Iran. Korean J Parasitol 2012; 50: 371-374. https://doi.org/10.3347/kjp.2012.50.4.371
  5. Dubey JP, Hill DE, Jones JL, Hightower AW, Kirkland E, Roberts JM, Marcet PL, Lehmann T, Vianna MC, Miska K, Streekumar C, Kwok OC, Shen SK, Gamble HR. Prevalence of viable Toxoplasma gondii in beef, chicken, and pork from retail meat stores in the United States: risk assessment to consumers. J Parasitol 2005; 91: 1082-1093. https://doi.org/10.1645/GE-683.1
  6. Muniz-Feliciano L, Van Grol J, Portillo JA, Liew L, Liu B, Carlin CR, Carruthers VB, Matthews S, Subauste CS. Toxoplasma gondii-induced activation of EGFR prevents autophagy protein-mediated killing of the parasite. PLoS Pathog 2013; 9: e1003809. https://doi.org/10.1371/journal.ppat.1003809
  7. Soldati D, Meissner M. Toxoplasma as a novel system for motility. Curr Opin Cell Biol 2004; 16: 32-40. https://doi.org/10.1016/j.ceb.2003.11.013
  8. Carruthers VB, Giddings OK, Sibley LD. Secretion of micronemal proteins is associated with Toxoplasma invasion of host cells. Cell Microbiol 1999; 1: 225-235. https://doi.org/10.1046/j.1462-5822.1999.00023.x
  9. Jewett TJ, Sibley LD. Aldolase forms a bridge between cell surface adhesins and the actin cytoskeleton in apicomplexan parasites. Mol Cell 2003; 11: 885-894. https://doi.org/10.1016/S1097-2765(03)00113-8
  10. Zheng B, He A, Gan M, Li Z, He H, Zhan X. MIC6 associates with aldolase in host cell invasion by Toxoplasma gondii. Parasitol Res 2009; 105: 441-445. https://doi.org/10.1007/s00436-009-1401-5
  11. Peng GH, Yuan ZG, Zhou DH, He XH, Liu MM, Yan C, Yin CC, He Y, Lin RQ, Zhu XQ. Toxoplasma gondii microneme protein 6 (MIC6) is a potential vaccine candidate against toxoplasmosis in mice. Vaccine 2009; 27: 6570-6574. https://doi.org/10.1016/j.vaccine.2009.08.043
  12. Yan HK, Yuan ZG, Song HQ, Petersen E, Zhou Y, Ren D, Zhou DH, Li HX, Lin RQ, Yang GL, Zhu XQ. Vaccination with a DNA vaccine coding for perforin-like protein 1 and MIC6 induces significant protective immunity against Toxoplasma gondii. Clin Vaccine Immunol 2012; 19: 684-689. https://doi.org/10.1128/CVI.05578-11
  13. Sibley LD, Ajioka JW. Population structure of Toxoplasma gondii: clonal expansion driven by infrequent recombination and selective sweeps. Ann Rev Microbiol 2008; 62: 329-351. https://doi.org/10.1146/annurev.micro.62.081307.162925
  14. Robert-Gangneux F, Darde ML. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev 2012; 25: 264-296. https://doi.org/10.1128/CMR.05013-11
  15. Zhou P, Zhang H, Lin RQ, Zhang DL, Song HQ, Su C, Zhu XQ. Genetic characterization of Toxoplasma gondii isolates from China. Parasitol Int 2009; 58: 193-195. https://doi.org/10.1016/j.parint.2009.01.006
  16. Zhou P, Nie H, Zhang LX, Wang HY, Yin CC, Su C, Zhu XQ, Zhao JL. Genetic characterization of Toxoplasma gondii isolates from pigs in China. J Parasitol 2010; 96: 1027-1029. https://doi.org/10.1645/GE-2465.1
  17. Su C, Shwab EK, Zhou P, Zhu XQ, Dubey JP. Moving towards an integrated approach to molecular detection and identification of Toxoplasma gondii. Parasitology 2010; 137: 1-11. https://doi.org/10.1017/S0031182009991065
  18. Chen J, Fang SF, Zhou DH, Li ZY, Liu GH, Zhu XQ. Sequence variation in the Toxoplasma gondii eIF4A gene among strains from different hosts and geographical locations. Genet Mol Res 2014; 13: 3356-3361. https://doi.org/10.4238/2014.April.29.14
  19. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  20. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731-2739. https://doi.org/10.1093/molbev/msr121
  21. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003; 19: 1572-1574. https://doi.org/10.1093/bioinformatics/btg180
  22. Swofford DL. Paup*: phylogenetic analysis using parsimony, version 4.0b10. Sunderland, Massachusetts, USA. Sinauer Associates. 2002.
  23. Chen J, Li ZY, Zhou DH, Liu GH, Zhu XQ. Genetic diversity among Toxoplasma gondii strains from different hosts and geographical regions revealed by sequence analysis of GRA5 gene. Parasit Vectors 2012; 5: 279. https://doi.org/10.1186/1756-3305-5-279
  24. Xu Y, Zhang NZ, Chen J, Liu GH, Xu QM, Zhou DH, Zhu XQ. Toxoplasma gondii rhoptry protein 38 gene: sequence variation among isolates from different hosts and geographical locations. Genet Mol Res 2014; 13: 4839-4844. https://doi.org/10.4238/2014.January.14.3
  25. Fazaeli A, Carter PE, Darde ML, Pennington TH. Molecular typing of Toxoplasma gondii strains by GRA6 gene sequence analysis. Int J Parasitol 2000; 30: 637-642. https://doi.org/10.1016/S0020-7519(00)00036-9