DOI QR코드

DOI QR Code

가압식 코팅법을 이용한 다층막 제조

Preparation of the Multilayer Membrane Using the Phase Separated and Pressurization (PSP) Method

  • 전이슬 (한남대학교 대덕밸리캠퍼스 화공신소재공학과) ;
  • 임지원 (한남대학교 대덕밸리캠퍼스 화공신소재공학과)
  • Jeon, Yi Seul (Department of Advanced Material and Chemical Engineering, Hannam University) ;
  • Rhim, Ji Won (Department of Advanced Material and Chemical Engineering, Hannam University)
  • 투고 : 2015.10.06
  • 심사 : 2015.10.21
  • 발행 : 2015.10.31

초록

다공성 지지체인 Polyvinylidene fluoride (PVDF) 중공사막에 염석법을 기반으로 하여 Polyethyleneimine (PEI)와 Polyvinylsulfonic acid (PVSA)를 가압법(phase separated and pressurization, PSP)으로 코팅시켜 다층막을 제조하였다. 이에 열처리 온도, 코팅농도, 유입수 농도, 가교시간 및 가교제 농도에 대하여 NaCl 100 ppm을 공급액으로 하여 4 atm에서 투과도와 제거율을 알아보고자 하였다. 가장 좋은 결과로는 PEI 20,000 ppm과 PVSA 1,000 ppm, PEI 15%에 말산 2% 수용액으로 가압코팅 후 열처리하였을 때 투과도 24.3 LMH, 제거율 82.1%의 결과를 얻을 수 있었다.

The porous support polyvinylidene fluoride (PVDF) with a salting out based on the hollow fiber membrane polyethyleneimine (PEI) and polyvinylsulfonic acid (PVSA) by coating with by phase separated and pressurization (PSP) method to produce a multilayer membrane. The resulting membranes were characterized under the various conditions, such as the heat treatment temperature, coating concentration, feed concentration, cross-linking time and cross-link agent concentration in terms of flux and rejection rate for NaCl 100 ppm solution at 4 atm. The best results were PEI 20,000 ppm and PVSA 1,000 ppm, PEI 15% with a 2% malic acid aqueous solution coated by PSP method the hollow fiber membrane heat-treated for 1 minute showed flux 24.3 LMH, the rejection of 82.1%.

키워드

참고문헌

  1. E. H. Cho and J. W. Rhim, "Preparation of a new charged nanofiltration membrane based on polyelectrolyte complex by forced fouling induction for a household water purifier", Macrom. Res., 23, 183 (2015). https://doi.org/10.1007/s13233-015-3017-1
  2. S. U. Hong, "Effect of substrates on nanofiltration characteristics of multilayer polyelectrolyte membranes", Membr. J., 18, 185 (2008).
  3. N. Kim, "Preparation and characterization of fouling resistant nanofiltration membrane", Membr. J., 17, 44 (2007).
  4. J. H. Choi, C. K. Yeom, J. M. Lee, and D. S. Suh, "Nanofiltration of electrolytes with charged composite membranes", Membr. J., 13, 29 (2003).
  5. K. Y. Wang, T.-S. Chung, and J. J. Qin, "Polybenzimidazole (PBI) nanofiltration hollow fiber membranes applied in forward osmosis press", J. Membr. Sci., 300, 6 (2007). https://doi.org/10.1016/j.memsci.2007.05.035
  6. G. Edcher, J.-D. Hong, and J. Schmitt, "Buildup of ultrathin multilayer films by a self-assembly process:III. Consecutively alternating adsorption of anionic and cationic polyelecrolytes on charged surfaces", Thin Solid Films, 210, 831 (1992).
  7. J. H. Cho, "Analytical method for the fabrication of layer-by-layer assembled multilayer films", Polym. Sci. Technol., 19, 48 (2008).
  8. A. L. Rogach, D. S. Koktysh, M. Harrison, and N. A. Kotov, "Layer-by-layer assembled films of HgTe nanocrystals with strong infrared emission", Chem. Mater., 12, 1526 (2000). https://doi.org/10.1021/cm0000649
  9. A. A. Mamedov and N. A. Kotov, "Free-standing layer-by-layer assembled films of magnetite nanoparticles", Langmuir, 16, 5530 (2000). https://doi.org/10.1021/la000560b
  10. P. Podsiadlo, S.-Y. Choi, B. Shim, J. Lee, M. Cuddihy, and N. A. Kotov, "Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals", Biomacromolecules, 6, 2914 (2005). https://doi.org/10.1021/bm050333u
  11. Y. Wang, Z. Tang, M. A. Correa-Duarte, L. M. Liz-Marzan, and N. A. Kotov, "Multicolor luminescence patterning by photoactivation of semiconductor nanoparticle films", J. Am. Chem. Soc., 125, 2830 (2003). https://doi.org/10.1021/ja029231r
  12. G. Zeng, J. Gao, S. Chen, H. Chen, Z. Wang, and X. Zhang, "Combining hydrogen-bonding complexation in solution and hydrogen-bonding-directed lyaer-by-layer assembly for the controlled loading of a small organic molecule into multilayer films", Langmuir, 23, 11631 (2007). https://doi.org/10.1021/la702054d
  13. Y. Tian, Q. He, C. Tao, and J. Li, "Fabrication of fluorescent nanotubes based on layer-by-layer assembly via covalent bond", Langmuir, 22, 360 (2006). https://doi.org/10.1021/la0524768
  14. F. Caruso, D. Trad, H. Mohwald, and R. Renneberg, "Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules", Langmuir, 16, 1485 (2000). https://doi.org/10.1021/la991161n
  15. E. Allemann, R. Gurny, and E. Doelker, "Preparation of aqueous polymeric nanodispersions by a reversible salting-out process: influence of process parameters on particle size", Int. J. Pharm., 87, 247 (1992). https://doi.org/10.1016/0378-5173(92)90249-2
  16. H. Bagheri, A. Mir, and E. Babanezhad, "An electropolymerized aniline-based fiber coating for solid phase microextraction of phenols from water", Annl. Chim. Acta., 532, 89 (2005). https://doi.org/10.1016/j.aca.2004.10.040
  17. B. A. Kim, H. M. Lee, B. S. Lee, S. P. Kim, S. I. Cheng, and J. W. Rhim, "Enhancement of membrane performance through surface hydrophilization of hydrophobic porous flat-sheet membranes", Polymer(Korea), 35, 438 (2011).
  18. C. J. Park, S. P. Kim, S. I. Cheng, and J. W. Rhim, "Studies on th fouling reduction by coating of cationic exchange polymer onto reverse osmosis membrane surface", Polymer(Korea), 36, 810 (2012).
  19. Michael J. Hey, Daniel P. Jackson, and H. Yan, "The salting out effect and phase separation in aqueous solution of electrolytes and poly(ethylene glycol)", Polymer(Korea), 46, 2567 (2005).
  20. P. M. Gross, "The salting out of non-electrolytes from aqueous solutions", Chem. Rev., 13, 91 (1933). https://doi.org/10.1021/cr60044a007
  21. R. M. Mazo, "A fluctuation theory analysis of the salting out effect", J. Phys. Chem. B, 110, 24077 (2006). https://doi.org/10.1021/jp0656936
  22. M. Radall and C. F. Failey, "The activity ceofficeint of non-electrolytes in aqueous salt solutions from solubility measurements. The salting out order of the lons", Chem. Rev., 4, 285 (1927). https://doi.org/10.1021/cr60015a004