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Abstract. It is well known that using any additional information in the estimation of 
unknown parameters with new sample of observations diminishes the sampling units 
needed and minimizes the risk of new estimators. There are many rational reasons to 
assure that the existence of additional information in practice and there exists many 
practical cases in which additional information is available in the form of target value 
(initial value) about the unknown parameters. This article is described the problem of how 
the prior initial value about the unknown parameters can be utilized and combined with 
classical Bayes estimator to get a new combination of Bayes estimator and prior value to 
improve the properties of the new combination. In this article, two classes of Bayes-
shrinkage and preliminary test Bayes-shrinkage estimators are proposed for the scale 
parameter of exponential distribution. The bias, risk and risk ratio expressions are derived 
and studied. The performance of the proposed classes of estimators is studied for different 
choices of constants engaged in the estimators. The comparisons, conclusions and 
recommendations are demonstrated. 
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1. INTRODUCTION 
 
1.1 The uses of the exponential life model 
 
It is well known that in many issues of censored data of continuous random variable there 
are many functions/parameters like “time of failure” and “average life” are represented by 
the exponential distribution.  In addition, there are wide applications of exponential model 
in many fields and specialties. In fact, there are many reasons of using exponential model 
in numerous problems and especially in reliability, life testing and evaluation problems.   
Some of particular reasons which show the usefulness of exponential model are the 
following: it is well known that the Bathtub curve for the exponential model (or the 
reliability curve) has three featured phases.  These phases are called “debugging phase”, 
“the chance failure phase” and “the wear-out phase”. Exponential model seems to be a 
suitable model for modeling failures in second phase “the chance failure phase” since 
most of individual components/systems are dissipated maximum lifetimes in this phase. In 
addition, for the case of constant failure rate property of many variables, the exponential 
model is the most appropriate to model the inter arrival times. 
Today, even though not widely defended, the unsupported assumption that most reliability 
engineering problems can be modeled well by the exponential distribution is still widely 
held. In a quest for simplicity and solutions that we can grasp, derive and easily 
communicate, many practitioners have embraced simple equations derived from the 
underlying assumption of an exponential distribution for reliability prediction, accelerated 
testing, reliability growth, maintainability and system reliability analyses.      
Indeed, there are numerous and important applications of exponential distribution (see e.g. 
Davis (1952), Mann, et al. (1974) and Davison (2003)) in the fields of reliability 
estimation, life testing, quality control, maintenance, warranty and in most of specialties 
(engineering, physics, chemistry, biology, forestry, metrology, hydrology, medicine, 
pharmacy, economics, management, quality control, geology, geography and astronomy). 
 
1.2 Shrinkage and preliminary-test procedures 
 
It is very famous and well recognized by numerous experimenters in any applied fields 
that there are some prior information, experimental observations and estimation values 
about many practical problems. In addition, many experiments in each field were repeated 
by different or similar researchers in different times, i.e. it is possible to get some target 
values regarding many problems in each field due to past experiments. 
Utilizing such experimental information in new experiments/studies will be beneficial in 
many directions. The sampling units may be utilized, the sampling costs may be reduced 
and some good statistical properties could be achieved.   
Statistically speaking denote by 0θ  to any available prior estimate (or initial value) from 

previous experiments. Let us assume that the random sample of nXXX ,...,, 21  from 
the probability distribution function ),|( θXF  where θ  is an unknown parameter of the 
random variable X  and .)(XF  has an exact and explicit form.  
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In accordance with the above ideas of availability of previous experiments and based on  
to Katti (1962), Thompson (1968), Mehta and Srinivasan (1971), Kambo et al. (1990, 
1992) and Al-Hemyari and Al-Ali (2013) there are some rational/logical reasons to assure 
the availability of .0θ  Some of which are:  

(i) “The prior value 0θ  of θ  in many practical problems exists”, 

(ii) “We believe   is close to the true value of ,oθ ” or 

(iii) “We fear that  may be near the true value of   i.e., something bad happens if     

 and we do not know about it”. 
 
On the bases of the above arguments, Huntsberger (1955) was the first to considered the 
following type of weighting shrinkage estimator, 

},))ˆ(1(ˆ)ˆ({~
0θθφθθφθ −+=H                                                  (1) 

where θ̂  is any good estimator of ,θ  0θ  is any prior value of ,θ  ),1)ˆ(0)(ˆ( ≤≤ θφθφ  be 

any weighting function of θ̂  and )ˆ(1 θφ−  assigning the level of dependability  in .0θ  Let 

the weight function )ˆ(θφ  of  Hθ
~  is splited into two portions and chosen accordance to the 

result of testing 0θ  in a small region R  as follows,  
ˆ ˆ( ), ,ˆ( )

ˆ1, .

ϕ θ θ
φ θ

θ

⎧ ∈⎪= ⎨
∉⎪⎩

if R

if R
                                                        (2) 

In this case )1)ˆ(0)(ˆ( ≤≤ θϕθϕ is the new shrinkage weight function. Substituting )ˆ(θϕ  
given above in the estimator Hθ

~  (equation (1)) leads to the Thompson (1968) type 

estimator ),~( Tθ  which is called the preliminary test shrinkage estimator and given by, 

0 0 1

1

ˆ ˆ ˆ( )( ) ,
ˆ ˆ,

ϕ θ θ θ θ θ
θ

θ θ

⎧ − + ∈⎪= ⎨
∉⎪⎩

%
T

if R

if R
                                             (3) 

where R is preliminary test region constructed on space of θ  and based on .0θ  It is worth 

to mentioning that if ,)ˆ( k=θϕ k  is constant such that ,10 ≤≤ k then Tθ
~ construed the first 

attempt of preliminary test shrinkage estimator which was proposed by Thompson. Also, 
the author extended the proposed estimator to binomial, Poisson and normal parameters.  
Following Hunteburger (1955) and Thompson (1968), it is worth to mentioning that 
Mehta and Srinivasan (1971), Pandey (1988, 1983),  Chiou (1992a, 1992b, 1990, 1987), 
Kambo et al. (1990,1992), Kourouklis (1994), Lemmer (2006), Al-Hemyari (2010), Al-
Hemyari and Jehel (2011), Al-Hemyari and Al-Ali (2013), Al-Hemyari et al. (2013), Al-
Hemyari and Al-Dabagh (2014), Al-Hemyari  and Al-Dolami (2014) have studied 
estimators (1) and (3) for parameters and reliability function of exponential, Weibull and 
normal models by proposing different weight functions. 
 
 

0θ

0θ ,θ
,0 θθ ≅



 

 

58 Computational procedures for exponential life model

 

2. BAYES AND BAYES-SHRINKAGE PROCEDURES 
 

In this section, the Bayes estimator and the Bayes-shrinkage estimator are reviewed and 
discussed.  
 
2.1 The MLE and the Bayes procedures 
 
The one-parameter exponential model is defined by,   

( | ) (1 / ) exp{ ( )}, 0, 0,θ θ θ
θ

= − ≥ >
xf x x                                    (4) 

where θ   being  the  characteristic life,  acts as a scale parameter. Let θ̂  be an estimator 
of θ  computed from a random samples nXXX ,...,, 21  of size n  taken from (4).  

Define the MLE θ̂  of  based on n  observations by,  
1

1

ˆ / , ,θ
=

= = ∑
n

i
i

S n S X                                                      (5) 

where θ̂  is a function of the complete sufficient statistics S  and the statistics 
θθθ /ˆ2)ˆ( nT = is distributed as chi-square random variable. Sarhan and Greenberg 

(1962), Mann et al. (1974), Sinha (1986) and Bain and Engelhardt (1991) and several 
other authors have studied the problem of the classical estimation of the parameter .θ    
For the problem of assuming the random property of the unknown parameters, numerous 
papers have studied the Bayes estimators of the parameters of statistical distribution 
including exponential model as indicated in Section 1. 
Consider the class of prior distributions of θ  (see Sinha (1986)) given by, 

( ) exp{ ( )}, , 0, 0.σθ θ σ κ θ
θ

∝ − ≥ >g                                         (6) 

 
Remark 1. It may be worth to mentioning that in the class of prior distributions given in 
(6) if 0, >= CCκ  and 0=σ it will tends to a general class of priors. If 1=κ and 

,0=σ   then )(θg  tends to Jeffrey’s prior.   
 
It is well known that  the posterior density function of the parameter θ  (see, Sinha (1986), 
pages 145-146) using ),(θg is given by, 

( ) 11( | ) ( ) exp ( ), 0.
( 1)

κ κ σθ θ σ θ
κ θ

− + + − +
= + − >
Γ + −

n n Sg T S
n

                     (7) 

The expression of the Bayes estimator of the parameter θ  under the squared error loss 
function is denoted by 0θ̂ and defined by, 

0
0

ˆ ( | ) .θ θ θ θ
∞

= ∫ g T d                                                                 (8) 

θ



 

59Zuhair A. Al-Hemyari, H. A. Al-Dabag and Ali Z. Al-Humairi 

 

The expression of the Bayes estimator of the parameter θ  as a result of the integration of 
the above equation can be displayed (see e.g. Bernardo and Smith (2000) and Sinha 
(1986)) by, 

0̂
ˆ( ) / ( 2) ( ) / ( 2), , 0.θ σ κ θ σ κ σ κ= + + − = + + − >S n n n                       (9) 

 
2.2 The classical Bayes-shrinkage procedure 
 
Lemmer (1981) was suggested to shrink the unbiased linear estimator θ̂  of θ  to ordinary 
Bayes estimator .ˆ

0θ  If 0̂θ  was used instead of the prior value 0θ  in Huntsberger (1955) 

type estimator ,~
Hθ  we will get the general type of Bayes-shrinkage estimator Lθ

~ and 
defined by, 

0 0 0
ˆ ˆ ˆ ˆ{ ( ) (1 ( )) },θ ϕ θ θ ϕ θ θ= + −%

L                                                (10) 
where ),1)ˆ(0)(ˆ( 00 ≤≤ θφθφ  is a shrinkage weighting function assigning the level of 

dependability  in θ̂  and )ˆ(1 0θφ−  assigning the level of dependability  in the Bayes 

estimator .0̂θ  If we assume that the shrinkage weighting function )ˆ( 0θφ  is constant such 

that ,10 ≤≤ k then Lθ
~ tends to the first version of Bayes-shrinkage estimator which was 

proposed by Lemmer (1981). 
It may be worth to be mentioned that Lemmer extended the proposed Bayesian shrinkage 
estimator to the parameters of binomial, Poisson and normal parameters. Following 
Lemmer (1981), Pandey and Upadhyay (1987, 1985a, 1985b, 1985c), Upadhyay and 
Singh (1992) and Yang et al. (2013) studied the Bayes-shrinkage estimator for the 
exponential parameter in different contexts.  
The Bayesian shrinkage estimator has been adapted in various other estimation problems 
by Soland (1968), Pandey and Upudhyoy (1987, 1985a, 1985b, 1985c), Pandey and Singh 
(1989), Chiou (1993), Bennet et al. (2006),  Prakash and Singh (2009), Zhao, et al. (2010), 
Lanping (2011), Shanubhouge and Jiheel (2013), and Al-Hemyari and Al-Dabag (2014). 
The purpose of this paper is to modified the Bayes-shrinkage estimator and proposed the 
preliminary test Bayes-shrinkage estimator to the scale parameter of exponential 
distribution based on complete and censored data and using the weight functions )ˆ( 0θφ  

and )ˆ( 0θϕ  and the region .R  More specifically, the following classes of estimators are 
proposed and studied: 

1 0 0 0 0
ˆ ˆ( )( ) ,θ ϕ θ θ θ θ= − +%                                                        (11) 

and 

0 0 0 0
2

0

ˆ ˆ ˆ( )( ) , ,
ˆ ˆ, .

ϕ θ θ θ θ θ
θ

θ θ

⎧ − + ∈⎪= ⎨
∉⎪⎩

% if R

if R
                                           (12) 

The classical and Bayes estimators are discussed in section 2. The computation of 
proposed estimators for the scale parameter of exponential distribution are derived and 
studied in sections 3 and 4 respectively. Two estimators are originated from the proposed 
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classes are also studied for specific choices of )ˆ( 0θφ  and )ˆ( 0θϕ  and the region R  in 
sections 3 and 4. In section 5, the proposed estimators are extended to the case of censored 
samples. The performance of the proposed classes is studied numerically based on the bias 
ratio, risk and the relative risk expressions. The rest of the paper (sections 6 and 7) is 
concentrated to the simulation results and discussion and summary, conclusions and 
recommendation.  
 
 

3. THE MODIFIED BAYES–SHRINKAGE PROCEDURE 
 
Just like the idea of modeling or formulization the Bayes estimators, it is well known that 
combining any additional information about the unknown parameters and a sample of 
observations in the estimation process of the unknown parameters will improve the 
statistical properties of the final estimators. 
As explained earlier, the prior initial value may be arise for a number of reasons, and such 
prior value were combined numerously with the classical estimators to introduce the 
concepts of ordinary shrinkage estimators as well as the Bayes estimator was combined 
with classical estimator to introduce the concepts of Bayes–shrinkage estimators.  
To some extent, combination of the Bayes estimator and prior initial value 0θ  is a 
reasonable choice with rational reason, satisfies same ideas of ordinary shrinkage 
estimators and Bayes estimators and it may be improved the estimation properties of the 
new combination. 
Sections 1 and 2 present the problem of utilizing initial prior information 0θ  of the 
unknown parameter θ  of statistical distributions in the new estimation problems, is based 
on a combination of the classical and Bayes estimator.   
In this section, a modified Bayes-shrinkage procedure for the parameter θ  is applied for 
the case of exponential distribution and studied. 
 
3.1 The computation of the proposed Bayes–shrinkage procedure  
 
The general Bayes –shrinkage estimators is denoted by 0

~θ  and to be derived in this 
section. It is worth to be mentioning that the suggested class of new Bayes-shrinkage 
estimators is a modification of Lemmer Bayes-shrinkage estimator, and also is a general 
case of ordinary shrinkage estimators.  The proposed class of Bayes–shrinkage estimators 
is confined of Bayes estimator and prior information for the scale parameter θ  and given  
by, 

}))ˆ(1(ˆ)ˆ({~
00000 θθφθθφθ −+=                                            (13) 

where 0̂θ  is the Bayes estimator of ,θ 0θ is the prior value of ,θ  and )ˆ( 0θφ  

),1)ˆ(0( 0 ≤≤ θφ  represents any  weighting function of 0̂θ  specifying the degree of belief 

in .ˆ
0θ   
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Remark 2. The main differential characteristics of the proposed classes of Bayes–
shrinkage estimators 0

~θ  (equation (13)) from the existing Bayes–shrinkage estimators are:   
the proposed class of estimators, which is a combination of Bayes estimator and prior 
information rather than two classical estimators (i.e. Bayes estimator and MLE) and the 
use of a modified suitable exponential weighting function. 
The bias of 0

~θ  is defined by,  

0 0
ˆ 0

ˆ ˆ( | ) ( | )
θ

θ θ θ θ θ θ θ
∞

=

= −∫% %B f d  

θθθθθθφθθφ
θ

−−+= ∫
∞

=

ˆ)|ˆ(]))ˆ(1(ˆ)ˆ([ 0000
0ˆ

df                               (14) 

 
 
Remark 3. When 0θθ =  we have 

0 0 0 0 0
ˆ 0

ˆ ˆ ˆ ˆ( | ) [ ( )( )] ( | ) .
θ

θ θ ϕ θ θ θ θ θ θ
∞

=

= −∫%B f d                                      (15) 

The risk expression (RE) of 0
~θ  is defined by, 

0 0 0
ˆ( | ) ( | ) / ( | ).θ θ θ θ θ θ=% %RE MSE MSE                                           (16) 

 
where 

[ ]2
0 0 0 0 0

ˆ 0

ˆ ˆ ˆ ˆ ˆ( | ) ( ) (1 ( )) ( | ) ,
θ

θ θ φ θ θ φ θ θ θ θ θ θ
∞

=

= + − −∫%MSE f d                     (17) 

and )ˆ( 0 θθMSE  is the MSE expression of .0̂θ  
 
Remark 4. When 0θθ =  we have 

[ ]2
0 0 0 0 0 0

ˆ 0

ˆ ˆ ˆ ˆ ˆ( | ) ( | ) / ( )( ) ( | ) .
θ

θ θ θ θ φ θ θ θ θ θ θ
∞

=

= −∫%RE MSE f d                        (18) 

 
In the following section, a particular choice of )ˆ( 0θφ  for the Bayes estimator is chosen in 
accordance with form of exponential model. In addition, the Bayes-shrinkage estimator 

01
~θ  of the proposed class of estimators for the scale parameter θ  of the exponential 

distribution is studied, when a prior guess value 0θ of the scale parameter is available. 
 
3.2 The computation of the estimator 01

~θ   
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In this section, the proposed Bayes-shrinkage estimators is considered when θ  is the scale 
parameter  of the exponential distribution, and when a special weight function )ˆ( 01 θφ is 

used (i.e. in equation (13)) and a prior guess value 0θ  of the scale parameter is available 

from the past experience. The resulting estimator is denoted by .~
01θ  

In fact, the performance of 01
~θ  is depends on two factors. The first is the closeness of 0θ  

to ,θ  and the second factor is the way of selection of  ).ˆ( 01 θφ   Indeed, the value of 0θ  
usually came from the previous experiment and the experimenter have no information 
about the real value of .θ  Moreover, )ˆ( 01 θφ  should not be based on unknown .θ  In order 

to gain some improvement in the performance of ,~
01θ the function )ˆ( 01 θφ has to be 

carefully selected. 
Following Mehta and Srinivasan (1971) and Al-Hemyari and Al-Dabag (2014), the 
estimator 01

~θ  uses the following modified weighting function ),ˆ( 01 θφ  

1 0 0
ˆ ˆ( ) (1 exp( )), 0 1, 0.φ θ μ βθθ μ β= − − ≤ ≤ ≥                                 (19) 

 
Remark 5. The choice ,0=μ  and with any choice of ,β  lead to ;1)ˆ( 01 =θφ if 1=μ  and 

,0=β  then ;0)ˆ( 01 =θφ and any other choices for 10 ≤≤ μ  and 0≥β lead to .1)ˆ(0 01 ≤≤ θφ  

Using )ˆ( 01 θφ  (as given in equation (19)) in equation (13), the Bayes shrinkage estimator  

01
~θ   takes the following formula,   

                    

1 0 0 0
ˆ ˆ ˆ( [( / ) / (( 2) / )]) ( [( / ) / (( 2) / )])exp( ).θ θ σ κ μ θ θ σ κ βθθ= + + − + − + + − −% n n n n n n     

(20) 
 
 Again using Eq. (14) and Eq. (16), the bias ratio (bias of 01

~θ relative to θ ) and the risk 

ratio expressions of classical estimator θ̂  or the Bayes estimator 0θ̂   relative to the risk of

01
~θ  (or the efficiency of 01

~θ  relative to θ̂  or )ˆ
0θ are given respectively by: 

1 1
1 0

1

2 2 1

1 ( / ) ( / )ˆ( ; | ) ( 1) ( )
[( 2) / ] [( 2) / ] [( 2) / ]

( ) ( ),
( ) [( 2) / ]( )

σ σθ θ θ θ μλ μ θ
κ κ κ

μ
βλθ κ βλθ

− −

+

+

= − + + − ×
+ − + − + −

× −
+ + − +

%

n n

n n

n nB
n n n n n n

n n
n n n n

    

(21) 
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1

1 0 1 0

2 2
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2

2

2 1

1 2 ( / ) 1ˆ ˆ( ; | ) [ ( | ) / ( | )] 1 / { ( 1)
[( 2) / ] [( 2) / ] [( 2) / ]
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1 )
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++ −
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n nn
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(22) 
And 

1 0 0 0 1 0 2 2

1
2 2

2

2 2

2

1 1ˆ ˆ( ; | ) [ ( | ) / ( | )] { [(1 [( 2) / ])
[( 2) / ] [( 2) / ]

1 2 ( / ) 1 2( / )] }(1 / { ) ( 1) (1 )
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[( 2) / ]

θ θ θ θ θ θ θ κ
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−
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+
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(23) 
where )ˆ( 0 θθRE is the risk expression of .ˆ

0θ  
 
 

4. THE PRELIMINARY TEST BAYES–SHRINKAGE PROCEDURE 

 
4.1 The Computation of the proposed Bayes–shrinkage procedure  
 
The Bayes–shrinkage estimators 0

~θ was proposed in last section and the general 
expressions of the bias ratio and relative risk were derived. A special case of Bayes- 
shrinkage estimator uses an exponential weighting function is studied and the related 
expressions were derived. 
As it was mentioned in section 3 that the performance of 0

~θ  were depends on two factors. 
Although, the second factor was treated in section 2 but the first factor which is related to 
the closeness of 0θ  to θ  will be received more attention in this section and should not be 
neglected.  
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In this section, we particularly paid more attention to test the closeness of 0θ  to θ  and 

then use the prior value 0θ  and concentrated in Bayes-type estimators to get new class of 
estimators which may valuably improve the performance of new class of estimators 
through the associate risk as it’s a key feature of estimators’ performance.  
In fact, the preliminary test procedure was used numerously in ordinary shrinkage 
estimators to test the closeness of 0θ  to .θ  In this section, following the ordinary 

shrinkage estimators the preliminary test procedure will be used to test the closeness of 0θ  

to θ  in 0
~θ  leading to a new class of preliminary test Bayes–shrinkage estimators denoted 

by .~
0 pθ  

The preliminary test Bayes–shrinkage estimators p0
~θ  is defined by: based on n   

observations of model (4), compute the classical estimator ,θ̂  and based on equation (9) 

compute the Bayes estimator .0̂θ  For the problem of testing the closeness of 0θ  to ,θ  a 

preliminary test region )(R  has to be formulated on the bases of .0θ  If ,ˆ R∈θ  i.e. 0θ  is 

accepted, the Bayes- shrinkage estimator takes the form 0000 )ˆ)(ˆ( θθθθϕ +−  in this step. 

If ,ˆ R∉θ i.e. 0θ  is rejected, and then the Bayes- shrinkage estimator consist of 0θ̂  only. 

Thus, the class of preliminary test Bayes-shrinkage estimators p0
~θ  takes the form, 

0 0 0 0
0

0

ˆ ˆ ˆ ˆ( ) (1 ( )) , ,
ˆ ˆ, .

ϕ θ θ ϕ θ θ θ
θ

θ θ

⎧ + − ∈⎪= ⎨
∉⎪⎩

%
p

if R

if R
                                   (24) 

where )ˆ( 0θϕ is defined in (1.2).  
 
Remark 6. It is noteworthy that considerable differential characteristics of the proposed 
classes of preliminary test Bayes-shrinkage estimators p0

~θ  (Eq. (24)) from the existing 
preliminary test Bayes-shrinkage estimators are: the proposed class of estimators, which is 
also a combination of Bayes estimator and prior information rather than two classical 
estimators (i.e. Bayes estimator and MLE) that use a modified suitable  exponential 
weighting function and two choices of test region. 
 
 Remark 7. If  R∈θ̂  with probability 1, the Bayes-shrinkage estimators p0

~θ  (Eq. (24)) 

tends to 0
~θ  (EQ. (13)), i.e. p0

~θ  is a special case of .~
0θ  

 
In order to study the behavioral pattern of  ,~

0 pθ the bias and risk expressions of p0
~θ   are 

derived for any )ˆ(,ˆ 0θϕθ  and .R The bias expression of p0
~θ  is defined by, 
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0 0
0

0 0 0 0 0

ˆ ˆ( | ; ) ( | )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ( ) (1 ( )) ] ( | ) ( ) ( | ) .

θ θ θ θ θ θ θ

ϕ θ θ ϕ θ θ θ θ θ θ θ θ θ θ θ

∞

= −

= + − − + −

∫

∫ ∫

% %
p p

R R

B R f d

f d f d

     (25) 

The risk expression of p0
~θ  is, 

).;|~(/)|ˆ();|~( 000 RMSEMSERRE pp θθθθθθ =                             (26) 
where 

2 2
0 0 0 0 0 0

0

2
0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( | ; ) ( ) ( | ) [ ( ) (1 ( )) ] ( | )

ˆ ˆ ˆ( ) ( | ) ,

θ θ θ θ θ θ θ ϕ θ θ ϕ θ θ θ θ θ θ

θ θ θ θ θ

∞

= − = + − −

+ −

∫ ∫

∫

% %
p p R

R

MSE R f d f d

f d

   (27) 

 and )ˆ( 0 θθ pMSE  is the MSE expression of .0̂ pθ  
 
4.2 Two choices for region R  
 
It is obviously that the class of estimators p0

~θ (Eq. (24)) contains the Bayes estimator, 

prior value, shrinkage function )ˆ( 0θϕ and the region .R In addition, the performance of 

p0
~θ  is naturally depends on )ˆ( 0θϕ and .R  In Section 3, shrinkage function )ˆ( 0θϕ  is 

selected and to complete the issue, two choices of the region R are proposed in this 
section. 
In order to test the closeness of 0θ  to ,θ   the hypothesis 00 : θθ =H  against the 

alternative 01 : θθ ≠H  is developed. It is worth to be mentioning that there are many 
approaches to carry a test for the above hypothesis. One of common approach of testing 
the above hypothesis is the preliminary test acceptance region were used by numerous 
papers.  
For the above purpose, denote the test statistic for testing the hypothesis 00 : θθ =H  

against the alternative 01 : θθ ≠H  by ).ˆ(θT  Assume that the above test has a level of 

significance ,α  then )ˆ(θT  has the lower 2/1 α−L and upper 2/αU 100( /2) percentile 

points. It is well known that the preliminary test region (denoted by 1R ) for )ˆ(θT  is 
defined by, 

1 1 /2 /2
ˆ{ ( ) [ , ]}.α αθ −= ∈R T L U                                               (28)                                    

Undoubtedly, the statistics θθθ /ˆ2)ˆ( nT = is distributed as chi-square random variable. 
Denoting the lower and upper 100( /2) percentile points of the chi-square distribution by 

2
2,2/1 nαχ −  and 2

2,2/ nαχ  respectively, and n2  are denoted to the degrees of freedom. This 

implies that the region 1R  has the following form, 
2 2

1 0 1 /2,2 0 /2,2[( / 2 ) , ( / 2 ) ].α αθ χ θ χ−= n nR n n                                 (29) 

α

α
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Following Al-Hemyari and Al-Dolimi (20-14), and Al-Hemyari and Al-Dabag (2014), it 
seems sensible to take in account the differences between 0θ  and θ  in construction of the 

region .R Denote this  choice 2R  which has the following formula, 
2

2 0
ˆ{ : ( ) ( | )}.θ θ θ θ θ= − ≤R MSE                                       (30) 

Some algebraic derivations lead to the following interval ,2R   

2 0 0[ (0, (1/ )), (1/ )].R Max n nθ θ θ θ= − +                                 (31) 
Special cases of preliminary test Bayes–shrinkage procedure is studied in subsection 4.3 
and the expressions of bias ratio and risk are derived. 
 
4.3 The computation of the estimator p01

~θ  
 
The general class of the preliminary test Bayes–shrinkage estimators for any parameter θ  
is proposed in section 4.2. In this section, the proposed class of Bayes-shrinkage 
estimators is considered where θ  is the scale parameter of the exponential distribution 
and when a prior guess value 0θ  of θ  is available from the past experience. The estimator 
will uses the same weight function given in equation (19) of section 3.2 with the regions 

2,1, =iRi  derived in section 4.3 and denoting the resulting estimator by ,~
01 pθ  and 

given by, 

0 0 0 0
1 0

0

ˆ ˆ ˆ ˆ(1 exp( )) ( exp( )) , ,
ˆ ˆ, , 1, 2.

i
p

i

if R

if R i

μ βθθ θ μ βθθ θ θ
θ

θ θ

⎧ − − + − ∈⎪= ⎨
∉ =⎪⎩

%                 (32) 

Using the same algebraic calculations of equations (22), the bias ratio (bias|θ ) of  

opθ~1  is given by,  

0 0
( 1) ( 1)1ˆ( ; | ; ) ( ) [ 2 ( ) ]( ( ) ( ))1 2 2 2 2

2
1 ( / )1 12 ( / )( ) ( ( ) ( )) ( 1) ,2 2 [( 2) / ] [( 2) / ]

p
n nn n nB R n n n n F b F ai n i n if

nn n nn n n F b F an i n i n n n n

μθ θ θ μλ βλ βλ

σθ σ βλ θ
κ κ

− + − +− + ∗ ∗= + − + −+ +

− − − ∗ ∗ −+ + − + −
+ − + −

%
 

 (33) 
 where  

ˆ1 ( / )1ˆ ˆ ˆ( | ) ( ) ( ) .
( )

i

n n n
i

R

nF R e d
n

θ θθ θ θ
θ

− −=
Γ∫                                     (34) 

Since under ,0H   )ˆ(T θ  has chi-square distribution with n2  degrees, it can be seen that 
( 1) 1ˆ( / ) ( )ˆ ˆ ˆ( | ) exp( ( / )) , 1, 2,3; 1, 2,

( 1)

( ) ( ),

i

i

b n n j

i
a

d i d i

nF R n d j i
r n

F b F a

θ θθ θ θ θ
+ − −

∗ ∗

= − = =
Γ + −

= −

∫              (35) 
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where ,],,[ iiiii babaR <= ,/2,/2,],,[ ******* θθ iiiiiiiii nbbnaababaR ==<=   

and (.)dF  is the distribution function of a chi-square random variable with d degrees of 
freedom. 
The expressions of the risk ratios of MLE or the Bayes estimators  relative to opθ~1  (or the 

efficiency of p01
~θ  relative to 0θ̂  or )ˆ

0θ were achieved by continuing the same  mode of 
the bias ratio expression which yields respectively to:  
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5. OTHER SAMPLING PROCEDURES 
 
In sections 3 and 4, the Bayes-shrinkage and preliminary Bayes-shrinkage estimators were 
derived respectively for complete data. Indeed, the censored samples are extensively used 
in life testing problems and models. In this section, the proposed estimators oθ

~
1  and opθ~1

are extended to the censored sampling schemes.   
In fact, the proposed estimators are based mainly on the Bayes estimator 0̂θ  and  ,0θ  

where 0̂θ  (see, equation (9)) is a function of .θ̂  Thus, we need only to study the 
modification of θ̂  in each of the following schemes: 
i) Right censored samples: Let the smallest )n(r ≤ ordered statistics 

)()2()1( ... rXXX ≤≤≤  of a random observations were followed the exponential 

probability distribution function ).|( θXF  The MLE  θ̂  of θ  based on )n(r ≤ ordered 
statistics is defined by,  

( ) ( )
1

ˆ / , ( ) .
r

i r
i

S r S X n r Xθ
=

= = + −∑                                           (38) 

It is well known that the statistics θ/θ̂r2  is distributed as chi-square distribution with 
r2 degrees of freedom. Then, replacing n2  by r2  in the expressions of the estimators  

oθ
~

1  and opθ~1 derived in sections 3 and 4 will create the righteous estimators for the above 
modifications. 
ii) Left censored samples:  Let the largest )(1 nbn ≤+− ordered statistics 

)()1()( ... nbb XXX ≤≤≤ +  of a random observations were followed the exponential 

probability distribution function ).|( θXF  The MLE  θ̂  of θ  based on )(1 nbn ≤+−  
ordered statistics is defined by, 

, ( ) ( )
1

ˆ / , ( ) ,
n

b n a i
i b

S n S b b n X Xθ β
= +

= = + − + ∑                                   (39) 

where .))1/(1( 1

1
,

−

=

+−= ∑ in
b

i
nbβ  Then, since the distribution  of the statistics θ/θ̂r2  is 

almost like chi-square distribution with n2 degrees of freedom (see Sarhan and Greenberg 
(1962)). Thus, computing θ̂  as given in equation (39) in place of equation (9) will create 
the righteous estimators for the left censored scheme. 
iii) Doubly censored samples: The estimators oθ

~
1  and opθ~1  derived in sections 3 and 4 

may be used for doubly censored scheme. Let the doubly censored scheme of 
)n(1cb ≤+−  order statistics ,X...XX )c()1b()b( ≤≤≤ + ncb1 ≤≤≤  of a random 

observations were followed the exponential probability distribution function ).|( θXF  

The MLE  θ̂  of θ  based on ncb ≤≤≤1  ordered statistics is defined by, 
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1

, ( ) ( ) ( )
1

ˆ / , ( ) ( 1) .
c

b n b i c
i b

S b S b b n X X n c Xθ β
−

= +

= = + − + + − +∑                   (40) 

Indeed, the distribution of the statistics θ/θ̂b2  is almost like chi-square with b2 degrees 
of freedom. Thus, computing θ̂  as given in equation (40) in place of equation (9) will 
also create the righteous Bayes-shrinkage estimators for the doubly censored scheme. 
iv) Censored sample with replacement:  Assume that a test is performed of  a random 
sample of size n  having exponential distribution with the mean θ.  Assume that the test is 
performed with replacement and to be terminated if there are r  failures 

.,...,, )()2()1( rXXX  Then, the MLE estimator of θ  (see Mann et al. (1974)) is 
defined by, 

( ) ( 1)
1

ˆ / , .
r

i i
i

nS r S X Xθ −
=

= = −∑                                              (41) 

Computing θ̂  as given in equation (41) in place of equation (9) will also create the 
righteous Bayes-shrinkage estimators for censored sample with replacement scheme. 
Since, the distribution of the statistics θ/θ̂r2  is known to have chi-square distribution 
with r2 degrees of freedom. 
 
Remark 8. The proposed  classes of Bayes–shrinkage estimators 0

~θ  and preliminary  test 

Bayes-shrinkage estimators p0
~θ can be extended to estimate the parameters of Pareto,  

gamma, chi-square and Weibull distributions in the cases of completed and censored data.  
 
 

6. SIMULATION RESULTS AND DISCUSSION 
 
For the problem of studying the properties of the proposed estimators, the bias ratio, risk 
and risk ratio expressions of the proposed estimators oθ

~
1  and opθ~1  were derived. In 

addition, few remarks were demonstrated to explain the behavioral pattern of each 
estimators in sections 3 and 4. In fact, it is difficult to provide a comprehensive theoretical 
study due to the complexity of the bias ratio, risk and risk ratio expressions of oθ

~
1  and 

.~
1 opθ  
In order to study the behavioral pattern of each estimator with respect to each constant 
involved in oθ

~
1  and ,~

1 opθ  a simulation study was provided in place of  a theoretical study 

for the bias ratio and risk ratio of oθ
~

1  and opθ~1  with respect to two classical estimators 

(MLE and Bayes estimators).The performance of oθ
~

1  and opθ~1  with respect to 

κσθλβμ ,,,,, 0  and n  was also studied. Some of the simulation results are shown 
in Figures 1 to 12.  
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6.1 Simulation results and discussion of 01
~θ  

 
In order to observe the performance of the proposed Bayes-shrinkage estimator 01

~θ , and to 

compare the risk of classical estimator )ˆ(θ or Bayes estimator )ˆ( 0θ  relative to the risk of 

Bayes-shrinkage estimator 01
~θ  (or the efficiency of 01

~θ  relative to 0θ̂  or )0̂θ

.)),|;~(( 01 θθRR  the constants 3,2,1,6,4,2,0 == κσ , 0.004,0.01,0.05,0.1,0.5,μ =   

0.004,0.05,0.5,1,β = ,30)5(15=n  5)1(1)1.0(1.0=λ  and  20 =θ  have chosen and 
tried. Some of these computations are shown in Graphs 1 to 7, 10 and 11.  
In Graphs 1-7 we presented some sample values of the risk ratio ).ˆ|;~( 001 θθθRR  The 

)ˆ|;~( 001 θθθRR  is a decreasing function of ,λ and the risk ratio  of 01
~θ  is higher than that 

of the MLE θ̂  and Bayes estimator 0̂θ  for the range of  ,51.0 ≤≤ λ this means that the 

estimator 0
~θ  is more efficient than the classical estimators. Also, it is observed that 

generally )ˆ|;~( 001 θθθRR  is higher (i.e. it is more efficient) than )ˆ|;~( 01 θθθRR for the 

same range of .λ For this reason and to save space the results of )ˆ|;~( 001 θθθRR are 
discussed and some of them are reported.  
Figures 1-7 shows that )ˆ|;~( 001 θθθRR  is an increasing function of n  and a decreasing 
function of  κ , i.e. 30=n and 1=κ  give higher value of the relative risk than other 
values of n  and .κ  Also, )ˆ|;~( 001 θθθRR  is higher when 2=σ  than other values of .σ

In addition, for fixed σ,n  and ,κ )ˆ|;~( 001 θθθRR  is higher when 5.0=μ  than other 

values of .μ  Finally, for fixed κσ ,,n and ,μ )ˆ|;~( 001 θθθRR  is a decreasing function of 
,β  i.e. 004.0=β  gives higher value of the relative risk than other values of .β  Thus, the 

constants 004.0,1,2,30 ==== βκσn  and 5.0=μ  are recommended. Indeed, the 

)ˆ|;~( 001 θθθRR  for the choices 004.0,1,2,30 ==== βκσn  and 5.0=μ  is much 
higher than the classical estimators (as much as 21.88-23.53 times).  
Figures 10 and 11 provided some values of ).ˆ|;~( 001 θθθBR It is really interesting to  

observe that the bias ration of 0
~θ  for the choices 004.0,1,2,30 ==== βκσn  and  

5.0=μ  is reasonable and smaller than other values of the constants. 

In fact, comparing the results of 01
~θ  demonstrated in Graphs 1-7 with classical estimators 

in accordance with the risk ratio of 01
~θ   relative to the MLE θ̂  or the Bayes estimator 0̂θ  

shows that the proposed estimator 0
~θ  is more efficient than the classical estimators for the 

range of  .51.0 ≤≤ λ  Moreover, the proposed estimator 0
~θ  is more efficient than the 
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Bayes-shrinkage estimators of Pandey and Upadhyay (1985c), Upadhyay and Singh 
(1992),  and Yang et al.(2013). 
 
6.2 Simulation results and discussion of 1 0 pθ%  

The performance of the Bayes-shrinkage estimator 01
~θ  is studied and compared with 

respect to θ̂  and 0̂θ  in last section.   In this section, the preliminary Bayes-shrinkage 

estimator p01
~θ  is studied for regions 2,1, =iRi  and for the choices 

,3,2,1,6,4,2,0,1.0,05.0,01.0 === κσα ,5)1(1)1.0(1.0=λ ,30)5(15=n
.5)1(1)1.0(1.0=λ  

,1,5.0,05.0,004.0,5.0,1.0,05.0,01.0,004.0 == βμ  20 =θ  and .5)1(1)1.0(1.0=λ  

Also, the risk ratio of  p01
~θ  is compared with respect to the risk ratio of θ̂  and .0̂θ  

It is observed that the ratio );ˆ|;~( 001 ip RRR θθθ is higher than (i.e. they are more efficient)  

that of classical estimators ( 0̂θ  and )θ̂ for the range of ,51.0 ≤≤ λ and generally 

);ˆ|;~( 1001 RRR p θθθ is higher (i.e. it is more efficient) than ).;ˆ|;~( 2001 RRR p θθθ Also, the 

risk ratio of estimator p01
~θ with preliminary test region 1R is a decreasing function of .α  

Moreover, the performance of the estimator p01
~θ   is similar to that of 01

~θ  for the constant 

, , , , .n σ κ β μ Thus, some of the simulation values of );ˆ|;~( 1001 RRR p θθθ  are presented in 
Graphs 8 and 9. 
Finally, it is observed that 01

~θ  is biased. Graph 12 shows some simulation values of 

).;ˆ|;~( 1001 RBR p θθθ   

In fact, comparing the results of p01
~θ  with classical ,θ̂ 0̂θ  and existing Bayes-shrinkage 

estimators in accordance with the risk ratio of 01
~θ   relative to the MLE θ̂  or the Bayes 

estimator 0̂θ shows that the proposed estimator p0
~θ  is also efficient than the similar 

estimators for the range of  .51.0 ≤≤ λ   
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Figure 1. )ˆ|;~( 001 θθθRR ( 05.0,5.0,004.0,1,2 ===== αμβκσ , 30,25,20=n , 

.4)1(1)1.0(1.0=λ ) 
 

 
Figure 2. )ˆ|;~( 001 θθθRR ( 5.0,004.0,2,2 ==== μβκσ ,  30,25,20=n , 

.4)1(1)1.0(1.0=λ ) 
 

 
Figure 3. )ˆ|;~( 001 θθθRR ( 5.0,004.0,3,2 ==== μβκσ , .4)1(1)1.0(1.0=λ

.4)1(1)1.0(1.0=λ ) 
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Figure 4. )ˆ|;~( 001 θθθRR ( 5.0,004.0,4,2 ==== μβκσ ,  .4)1(1)1.0(1.0=λ , 

.4)1(1)1.0(1.0=λ ) 
 

 
Figure 5. )ˆ|;~( 001 θθθRR ( 5.0,004.0,1,4 ==== μβκσ , .4)1(1)1.0(1.0=λ  

.4)1(1)1.0(1.0=λ ) 
 

 
Figure 6. )ˆ|;~( 001 θθθRR ( 5.0,004.0,2,4 ==== μβκσ ,  .4)1(1)1.0(1.0=λ  

.4)1(1)1.0(1.0=λ ) 
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Figure 7. )ˆ|;~( 001 θθθRR ( 5.0,004.0,1,6 ==== μβκσ , .4)1(1)1.0(1.0=λ  

.4)1(1)1.0(1.0=λ ) 
 

 
Figure 8. );ˆ|;~( 1001 RRR p θθθ ( 01.0,5.0,004.0,1,2 ===== αμβκσ ,  

.4)1(1)1.0(1.0=λ , .4)1(1)1.0(1.0=λ ) 
 

 
Figure 9. );ˆ|;~( 1001 RRR p θθθ ( 05.0,5.0,004.0,1,2 ===== αμβκσ , 

30,25,20=n , .4)1(1)1.0(1.0=λ ) 
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Figure 10. )ˆ|~( 001 θθBR ( 5.0,004.0,1,2 ==== μβκσ , 30,25,20=n , 

.4)1(1)1.0(1.0=λ ) 
 

 
Figure 11. )ˆ|~( 001 θθBR ( 5.0,004.0,2,2 ==== μβκσ ,  .4)1(1)1.0(1.0=λ , 

.4)1(1)1.0(1.0=λ ) 
 

 
Figure 12. )ˆ|~( 001 θθ pBR ( 01.0,5.0,004.0,1,2 ===== αμβκσ , .4)1(1)1.0(1.0=λ ,  

.4)1(1)1.0(1.0=λ ) 
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7. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 
 
In this paper, two classes of Bayes-shrinkage and preliminary Bayes-shrinkage estimators 
are proposed studied and the expressions of bias ratio and risk ratio of each class for each 
parameter are derived. Two examples )~,~( 0101 pθθ for the scale parameter of exponential 

model with specific weight functions ))ˆ(( 0θφ and regions 2,1, =iRi  are given and the 

performance of 01
~θ  and p01

~θ  are studied using simulation. Some of the simulation results 
are demonstrated in Figures 1-12.  
It is observed that the Bayes-shrinkage estimator 01

~θ  is performed better than the MLE 
and Bayes estimator in the sense of smaller risk. The constants 

004.0,1,2,30 ==== βκσn  and 5.0=μ  are recommended which achieved much 
smaller risk (much higher relative efficiency) than the classical estimators (as much as 
21.88-23.53 times).  
It is also seen that the Bayes-shrinkage estimator p01

~θ  with preliminary test region 1R  
performed better than the MLE and Bayes estimator in the sense of smaller risk. The 
constants 004.0,1,2,30 ==== βκσn  and 5.0=μ  are recommended which achieved 
much smaller risk (much higher relative efficiency) than the classical estimators with  a 
broader range of  5/1.0 0 ≤=≤ θθλ  (as much as 12-15 times).  

Therefore, the proposed estimators 01
~θ  and p01

~θ are recommended for the practical use if 

the prior initial value  0θ  of θ  is available.  
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