DOI QR코드

DOI QR Code

Effects of Permeable Cryoprotectants on Viability of Mammalian Embryo Model

침투성 동결보호제가 포유류 초기배자의 생존성에 미치는 영향

  • Kim, Hyun (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA) ;
  • Cho, Sang-Rae (Hanwoo Research Station, National Institute of Animal Science, RDA) ;
  • Kim, Dong Kyo (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA) ;
  • Choe, Changyong (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA) ;
  • Seong, Hwan-Hoo (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA)
  • 김현 (농촌진흥청 국립축산과학원 가축유전자원센터) ;
  • 조상래 (농촌진흥청 국립축산과학원 한우연구소) ;
  • 김동교 (농촌진흥청 국립축산과학원 가축유전자원센터) ;
  • 최창용 (농촌진흥청 국립축산과학원 가축유전자원센터) ;
  • 성환후 (농촌진흥청 국립축산과학원 가축유전자원센터)
  • Received : 2015.01.30
  • Accepted : 2015.09.09
  • Published : 2015.09.30

Abstract

The objective of this study was to evaluate the toxicities of permeable cryoprotectants and finally to establish the cryopreservation method of surplus embryos obtained during assisted reproductive technology (ART). Toxicities of permeable cryoprotectants, dimethyl sulfoxide (DMSO), ethylene glycol (EG), Glycerol, and 1,2-PROH were investigated using a murine embryo model. Female $F-{_1}$ mice were stimulated with gonadotropin, induced ovulation with hCG and mated. Two cell embryos were collected and cultured after exposure to among DMSO, EG, Glycerol, and 1,2-PROH. Embryo development was evaluated up to the blastocyst stage. The total cell count of blastocysts that were treated with DMSO and Glycerol at the 2-cell stage was significantly lower than that were treated with EG ($81.1{\pm}15.1$), 1,2-PROH ($88.0{\pm}21.1$) or the control ($99.9{\pm}21.3$) (p<0.001). On comparison of four cryoprotectant treated groups, the DMSO and Glycerol treated group showed a decreased cell count compared with the EG and 1,2-PROH treated group (p<0.05). Both DMSO ($14.7{\pm}1.3$), EG ($12.1{\pm}1.1$), Glycerol ($15.2{\pm}1.8$), and 1,2-PROH ($11.5{\pm}1.3$) treated groups showed higher apoptosis rates of cells in the blastocyst compared with the control ($6.5{\pm}0.7$, p<0.0001). In addition, the DMSO or Glycerol treated group showed more apoptotic cells than the EG or 1,2-PROH treated group (p<0.001). The potential toxicity of cryoprotectants was uncovered by prolonged exposure of murine embryos to among DMSO, EG, Glycerol, and 1,2-PROH at room temperature. When comparing four permeable cryoprotective agents, EG and 1,2-PROH appeared to be less toxic than DMSO and Glycerol at least in a murine embryo model.

본 연구에서 배아의 생식세포 동결에 가장 흔히 쓰이고 있는 침투성 동결보호제(DMSO, EG, Glycerol, 1,2-PROH)의 독성을 비교하고자 생쥐 수정란 모델을 이용한 실험을 하였다. 생후 6주령의 암컷 생쥐 F1 hybrid mice에 10 IU의 PMSG를 복강 주사하여 과배란을 유도하고, 2-세포기 배아를 획득하고 침투성 동결보호제(DMSO, EG, Glycerol와 1,2-PROH) 각각 실온에서 60분간 노출시킨 후, 배양을 하였다. 배반포의 전체 세포수는 2-세포기 단계에서 DMSO($68.1{\pm}24.1$), EG($68.1{\pm}24.1$), Glycerol($81.2{\pm}27.0$), 1,2-PROH($68.1{\pm}24.1$) 침투성 동결보호제 처리군은 대조군에 비해 유의적으로($99.0{\pm}18.3$)(p<0.001) 낮았다. DMSO와 Glycerol 처리구가 EG와 1,2-PROH 처리구에 비해 세포수가 적었다. DMSO($15.4{\pm}1.5$), EG($10.2{\pm}1.4$), Glycerol ($10.2{\pm}1.4$), 1,2-PROH($10.2{\pm}1.4$) 네 처리구는 대조구($6.1{\pm}0.9$, p<0.0001)와 비교해서 배반포에서 세포사 비율이 더 높음을 확인했다. 또한, DMSO와 Glycerol 처리구는 EG와 1,2-PROH 처리구(p<0.001)보다 더 많은 세포사멸된 세포가 각각 확인되었다. DMSO, EG, Glycerol과 1,2-PROH 처리군과 대조군 사이에는 배아 부화율에 있어서 차이가 있었으며 이는 배아에 대한 동결보호제의 잠재적인 독성을 확인한 결과였다. 이번 연구에서 장기간 처리했을 때 EG와 1,2-PROH 처리군보다 DMSO와 Glycerol 처리군에서 배아발달과 세포수가 저하된 것은 DMSO와 Glycerol의 독성이 더 높을 것으로 사료된다.

Keywords

References

  1. Al-Hasani S, Diedrich K, van der Van H, Reinecke A, Hartje M and Krebs D. 1987. Cryopreservation of human oocytes. Hum. Reprod. 2:695-700. https://doi.org/10.1093/oxfordjournals.humrep.a136616
  2. Candy CJ, Wood MJ and Whittingham DG. 1997. Effect of cryoprotectants on the survival of follicles in frozen mouse ovaries. J. Reprod. Fertil. 110:11-19. https://doi.org/10.1530/jrf.0.1100011
  3. Cohen J, Somons FR, Edwards RG, Fehilly CB and Fishel SB. 1985. Pregnancies following the frozen storage of expanding human blastocytes. J. IVF. ET. 2:59-64.
  4. Demici B, Lomage J, Salle B, Frappart L, Franck M and Guerin JF. 2001. Follicular viability and morphology of sheep ovaries after exposure to cryoprotectant and cryopreservation with different freezing protocols. Fertil. Steril. 75:754-762. https://doi.org/10.1016/S0015-0282(00)01787-8
  5. Fehill CB, Cohen J, Simons RF, Fishel SB and Edwards RG. 1985. Cryopreservation of cleaving embryos and expanded blastocysts in the human; A comparative study. Fertil. Steril. 44:638-644. https://doi.org/10.1016/S0015-0282(16)48980-6
  6. Friedler S, Giudice LC and Lamb EJ. 1988. Cryopreservation of embryos and ova. Fertil. Steril. 49:743-764. https://doi.org/10.1016/S0015-0282(16)59879-3
  7. Gilmore JA, McGann LE, Liu J, Gao DY, Peter AT and Kleinhans FW. 1995. Effect of cryoprotectant solutes on water permeability of human spermatozoa. Biol. Reprod. 53:985-995. https://doi.org/10.1095/biolreprod53.5.985
  8. Hamberger L, Hazekamp J. 2002. Towards single embryo transfer in IVF. J. Reprod. Immunol. 55:141-148. https://doi.org/10.1016/S0165-0378(01)00135-8
  9. Kim MK, Lee SJ, Uhm EU, Yoon SH, Park SP, Chung KS and Lim JH. 1996. Cryopreservation of mouse IVF zygotes by vitrification. J. Animal Reprod. 20:119-126.
  10. Lassalle B, Testart J and Renard JP. 1985. Human embryo features that influence the success of cryopreservation with the use of 1,2 propanediol. Fertil. Steril. 44:645-651. https://doi.org/10.1016/S0015-0282(16)48981-8
  11. Mahadevan MM and Miller MM. 1997. Deleterious effect of equilibration temperature on the toxicity of propanediol during cryopreservation of mouse zygotes. J. Assist. Reprod. Genet. 14:51-54. https://doi.org/10.1007/BF02765753
  12. Mandelbaum J, Junca AM, Plachot M, Alnot MO, Tibi C, Cohen J and Salat-Baroux J. 1988. Solutions provided by the freezing of embryos and questions posed by the freezing of human oocytes. Rev. Fr. Gynecol. Obstet. 83:619-622.
  13. Newton H, Pegg DE, Barrass R and Gosden RG. 1999. Osmotically inactive volume, hydraulic conductivity, and permeability to dimethyl sulphoxide of human mature oocyte. J. Reprod. Fertil. 117:27-33. https://doi.org/10.1530/jrf.0.1170027
  14. Nowshari MA, Nayudu PL and Hodges JK. 1995. Effect of cryoprotectants and their concentration on post-thaw survival and development of rapid frozen-thawed pronuclear stage mouse embryos. Hum. Reprod. 10:3237-3242. https://doi.org/10.1093/oxfordjournals.humrep.a135895
  15. Polge C, Smith AU and Parkes AS. 1949. Retrieval of spermatozoa after vitrification and dehydration at low temperatures. Nature. 164:666-676. https://doi.org/10.1038/164666a0
  16. Rayos AA, Takahashi YM, Hishinuma A and Kanagawa H. 1994. Quick freezing of unfertilized mouse oocytes using ethylene glycol with sucrose or trehalose. J. Reprod. Fertil. 24:100-123.
  17. Renard JP, Bui-Xuan Nguyen and Garnier V. 1984. Two-step freezing of two cell rabbit embryos after partial dehydration at room temperature. J. Reprod. Fertil. 71:573-580. https://doi.org/10.1530/jrf.0.0710573
  18. Siebzehnruebl ER, Todorow S, van Uem J, Koch R, Wildt L and Lang N. 1989. Cryopreservation of human and rabbit oocytes and one-cell embryos: A comparison of DMSO and propanediol. Human. Reprod. 4:312-317. https://doi.org/10.1093/oxfordjournals.humrep.a136895
  19. Szell A, Zhang J and Hudson R. 1990. Rapid cryopreservation of sheep embryos by direct transfer into liquid nitrogen vapour at -180 degrees C. Reprod. Fertil. Dev. 2:613-618. https://doi.org/10.1071/RD9900613
  20. Takagi M, Boediono A, Saha S and Suzuki T. 1993. Survival rate of frozen-thawed bovine IVF embryos in relation to exposure time using various cryoprotectants. Cryobiology. 30:306-312. https://doi.org/10.1006/cryo.1993.1029
  21. Todorow SJ, Siebzehnrubl ER, Koch R, Wildt L and Lang N. 1989. Comparative results on survival of human and animal eggs using different cryoprotectants and freeze-thawing regimens. I. Mouse and hamster. Hum. Reprod. 4:805-811. https://doi.org/10.1093/oxfordjournals.humrep.a136990
  22. Whittingham DG and Leibo SP. 1972. Mazur. Survival of mouse embryos frozen to $-196^{\circ}C$ and $-269^{\circ}C$. Science NY. 187: 411-414.
  23. Whittingham DG. 1980. Principles of embryo preservation. In: Ashwood Smith MJ, Farrant J. editor. Low Temperature Preservation in Medicine and Biology. Pitman Medical, Tunbridge Wells. 65-83.
  24. Wilmut L. 1972. The effect of cooling rate, warming rate cryoprotective agent and stage of development on survival of mouse embryos during freezing and thawing. Life Sci. 2: 1071-1079.
  25. Yoon TK, Lee DR, Cha SK, Chung HM, Lee WS and Cha KY. 2007. Survival rate of human oocytes and pregnancy outcome after vitrification using slush nitrogen in assisted reproductive technologies. Fertil. Steril. 88:952-956. https://doi.org/10.1016/j.fertnstert.2006.12.071
  26. Zeilmarker GH, Alberta AT and Van Gent I. 1984. Two pregnancies following transfer of intact frozen-thawed embryos. Fertil. Steril. 42:293-296. https://doi.org/10.1016/S0015-0282(16)48029-5
  27. Zhu SE, Kasai M, Otoge H, Sakurai T and Machida T. 1993. Cryopreservation of expanded mouse blastocysts by vitrification in ethylene glycol-based solutions. J. Reprod. Fert. 98:139-145. https://doi.org/10.1530/jrf.0.0980139