DOI QR코드

DOI QR Code

FET센서 감도 향상 측정을 위한 최적화

Optimization for Higher Sensitive Measurements of FET-type Sensors

  • 손영수 (대구가톨릭대학교 의공학과)
  • Sohn, Young-Soo (Department of Biomedical Engineering, Catholic University of Daegu)
  • 투고 : 2014.11.09
  • 심사 : 2014.12.23
  • 발행 : 2015.02.10

초록

전계 효과 트랜지스터(FET) 기반의 이온 또는 바이오센서에 대한 연구는 지금까지 활발하게 이루어지고 있다. 본 논문에서는 여러 가지 측정 방법 중에 FET 게이트 절연체 위의 감지막과 이온 또는 생분자의 상호작용으로 전하 분포의 변화가 일어나면 이로 인해 드레인 전류의 변화를 측정하는 방법을 기반으로, 동일한 입력 신호, 즉 동일한 이온 또는 생분자의 농도에 대해 최적의 출력 신호를 얻기 위한 방법에 대해 논의한다. 대표적인 FET 센서는 이온 감지 FET (ISFET)로 본 논문에서는 pH를 측정하는 센서를 이용하였다. ISFET는 게이트 전압 대신 기준전극 전압을 가하는데 이 기준전극 전압과 드레인 전류의 관계식을 측정하여, 가장 기울기가 큰 곳을 찾아 이를 기준으로 동작범위에서의 입력 변화에 대해 출력 신호인 포화영역에서 드레인 전류의 변화가 큰 조건을 설정해 보았다.

Field-effect transistor (FET)-based ion or biosensors have been intensively studied so far. Among many measurement methods, the variation of the drain current can be induced when ions or biomolecules are interacted with sensing membranes located on the gate insulator of FET. One of typical FET-type sensors is an ion-sensitive field-effect transistor (ISFET) utilized in this study. In ISFET, the voltage is usually applied to the reference electrode instead of the gate voltage. Firstly, the voltage applied to the reference electrode versus the drain current was observed, and the steepest slope in this graph was found. Using this point, the optimized condition was established for the larger variation of the drain current in the saturated region in response to the variation of the input in the dynamic range.

키워드

참고문헌

  1. P. Bergveld, Development of an ion-sensitive solid-state device for neurophysiological measurement, IEEE Trans. Biomed. Eng., BME-17, 59-63 (1970).
  2. Y.-S. Sohn, Field effect transistors for biomedical application, Appl. Chem. Eng., 24, 1-9 (2013).
  3. K.-Y. Park, Y.-S. Sohn, C.-K. Kim, H.-S. Kim, Y.-S. Bae, and S.-Y. Choi, Development of FET-type albumin sensor for diagnosing nephritis, Biosens. Bioelectron., 23, 1904-1907 (2008). https://doi.org/10.1016/j.bios.2008.03.011
  4. Y.-S. Sohn, C.-K. Kim, and S.-Y. Choi, Characteristics of a label-less electrochemical immunosensor based on a field-effect transistor for the detection of a biomarker in urine, Sensor Lett., 7, 640-643 (2009). https://doi.org/10.1166/sl.2009.1119
  5. P. Bergveld, Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years, Sens. Actuators B, 88, 1-20 (2003). https://doi.org/10.1016/S0925-4005(02)00301-5
  6. M. Kokot, Measurement of sub-nanometer molecular layer with ISFET without a reference electrode dependency, Sens. Actuators B, 157, 424-429 (2011). https://doi.org/10.1016/j.snb.2011.04.079
  7. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science, 293, 1289-1292 (2001) https://doi.org/10.1126/science.1062711
  8. A. Kim, C. S. Ah, H. Y. Yu, J.-H. Yang, I. B. Baek, C.-G. Ahn, C. W. park, M. S. Jun, and S. Lee, Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors, Appl. Phys. Lett., 91, 103901 (2007). https://doi.org/10.1063/1.2779965
  9. E. Stern, J. K. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, D. A. LaVan, T. M. Fahmy, and M. A. Reed, Label-free immunodetection with CMOS-compatible semiconducting nanowires, Nature Lett., 445, 519-522 (2007). https://doi.org/10.1038/nature05498
  10. G. B. Kang, J. M. Park, S. G. Kim, J. G. Koo, J. H. Park, Y.-S. Sohn, and Y. T. Kim, Fabrication and characterisation of CMOS compatible silicon nanowire biosensor, Electronics Lett., 44, 953-955 (2008). https://doi.org/10.1049/el:20081876
  11. K.-I Chen, B.-R. Li, and Y.-T. Chen, Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation, Nano Today, 6, 131-154 (20111). https://doi.org/10.1016/j.nantod.2011.02.001
  12. S.-K. Lee, Y.-S. Sohn, and S.-Y. Choi, Fabrication characteristics of $Al_2O_3$ pH-ion sensitive field-effect transistor fabricated using atomic layer deposition and sputter, Sensor Lett., 9, 3-6 (2011). https://doi.org/10.1166/sl.2011.1407
  13. B. G. Streetman and S. K. Banerjee, Solid State Electronic Devices, 6th Ed., 239, Pearson Prentice Hall, New Jersey, USA (2006).
  14. M. J. Schoning and A. Pophossian, Recent advances in biologically sensitive field-effect transistors (BioFETs), Analyst, 127, 1137-1151 (2002). https://doi.org/10.1039/b204444g