DOI QR코드

DOI QR Code

Stereoselective Synthesis of Novel Bestatin Analogs

새로운 베스타틴 유사체의 입체선택적 합성

  • Seo, Youngran (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Lee, SooBeom (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Young Gyu (Department of Chemical and Biological Engineering, Seoul National University)
  • 서영란 (서울대학교 공과대학 화학생물공학부) ;
  • 이수범 (서울대학교 공과대학 화학생물공학부) ;
  • 김영규 (서울대학교 공과대학 화학생물공학부)
  • Received : 2014.12.22
  • Accepted : 2015.01.15
  • Published : 2015.02.10

Abstract

Two new analogs of bestatin were prepared from $\small{D}$-leucine and $\small{D}$-valine in a stereoselective and efficient way. An aminopeptidase inhibitor bestatin shows significant biological effects on immunomodulation and is marketed for the treatment of acute myelocytic leukemia. The key intermediates, trans-oxazolidine methyl esters 2a and 2b, were obtained with more than 20 to 1 stereoselectivity in a one-pot procedure by the three cascade reactions between N-hydroxymethyl protected ${\alpha}$-amino aldehydes (4a and 4b) and phenylsulfonylnitromethane ($PhSO_2CH_2NO_2$) and the following in-situ ozonolysis. Basic hydrolysis of 2a and 2b, and then the peptide coupling with $\small{L}$-Leu-OMe produced the protected derivatives of two new bestatin analogs, 3a and 3b, respectively. The new isobutyl and isopropyl analogs of bestatin (1a and 1b) were produced in overall 51% and 38% yields, respectively, with high stereoselectivity from the corresponding protected ${\alpha}$-amino aldehydes 4 in a six-step process.

두 종류의 새로운 베스타틴(bestatin) 유사체를 $\small{D}$-leucine과 $\small{D}$-valine으로부터 효율적이면서 입체선택적으로 합성하였다. 아미노펩티데이즈 억제제인 베스타틴은 면역조절 효과를 보이며 급성백혈병 치료제로 상품화되어 있다. 주요 중간체인 trans-옥사졸리딘 메틸에스터 2a와 2b는 페닐설포닐나이트로메테인($PhSO_2CH_2NO_2$)과 N-하이드록시 메틸기가 보호기로 도입된 ${\alpha}$-아미노 알데하이드(4a와 4b) 간의 일련의 세 단계 연속반응과 연이은 가오존분해 반응으로부터 20 : 1 이상의 입체선택성으로 합성되었다. 2a와 2b의 가수분해 반응 후에 $\small{L}$-Leu-OMe와의 펩타이드 결합을 통하여 베스타틴의 새로운 유사체인 3a와 3b를 보호기가 도입된 형태로 얻었다. 이소부틸기와 이소프로필기를 갖는 두 종류의 새로운 베스타틴 유사체(1a와 1b)는 해당 ${\alpha}$-아미노알데하이드 4로부터 높은 입체선택성으로 6단계에 걸쳐 각각 51%와 38%의 수율로 합성되었다.

Keywords

References

  1. K. Ota, Review of ubenimex (Bestatin): clinical research, Biomed. Pharmacother., 45, 55-60 (1991). https://doi.org/10.1016/0753-3322(91)90123-B
  2. O. A. Scornik and V. Botbol, Bestatin as an Experimental Tool in Mammals, Curr Drug Metab., 2, 67-85 (2001). https://doi.org/10.2174/1389200013338748
  3. B. Bauvois and D. Dauzonne, Aminopeptidase-N/CD13 (EC 3.4.11.2) Inhibitors: Chemistry, Biological Evaluations, and Therapeutic Prospects, Med. Res. Rev., 1, 88-130 (2006).
  4. M. Wickstrom, R. Larsson, P. Nygren, and J. Gullbo, Aminopeptidase N (CD13) as a target for cancer chemotherapy, Cancer Sci., 102, 501-508 (2011). https://doi.org/10.1111/j.1349-7006.2010.01826.x
  5. H. Umezawa, T. Aoyagi, H. Suda, M. Hamada, and T. Takeuchi, Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes, J. Antibiot., 29, 97-99 (1976). https://doi.org/10.7164/antibiotics.29.97
  6. Y. Hirayama, S. Sakamaki, N. Takayanaqi, Y. Tsuji, T. Sagawa, H. Chiba, T. Matsunaga, and Y. Niitsu, Chemotheraphy with Ubenimex corresponding to patient age and organ disorder for 18 cases of acute myelogeneous leukemia in elderly patients-effects, complications and long-term survival, Gan To Kagaku Ryoho, 30, 1113-1118 (2003).
  7. E. M. Gordon, J. D. Godfrey, N. G. Delaney, M. M. Asaad, D. V. Langen, and D. W. Cushman, Design of Novel Inhibitors of Aminopeptidases. Synthesis of Peptide-Derived Diamino Thiols and Sulfur Replacement Analogues of Bestatin, J. Med. Chem., 31, 2199-2211 (1988). https://doi.org/10.1021/jm00119a023
  8. T. D. Ocain and D. H. Rich, Synthesis of Sulfur-Containing analogues of Bestatin. Inhibition of Aminopeptidases by $\alpha$-Thiolbestatin Analogues, J. Med. Chem., 31, 2193-2199 (1988). https://doi.org/10.1021/jm00119a022
  9. W. Yuan, B. Munoz, and C.-H. Wong, Development of Selective Tight-Binding Inhibitors of Leukotriene A4 Hydrolase, J. Med. Chem., 36, 211-220 (1993). https://doi.org/10.1021/jm00054a004
  10. S. L. Harbeson and D. H. Rich, Inhibition of Arginine Aminopeptidase by Bestatin and Arphamenine Analogues Evidence for a New Mode of Binding to Aminopeptidases, Biochemistry, 27, 7301-7310 (1988). https://doi.org/10.1021/bi00419a019
  11. M. B. Harbut, G. Velmourougane, G. Reiss, R. Chandramohanadas, and D. C. Greenbaum, Development of bestatin-based activity-based probes for metallo-aminopeptidases, Bioorg. Med. Chem. Lett., 18, 5932-5936 (2008). https://doi.org/10.1016/j.bmcl.2008.09.021
  12. T. Aoyagi, H. Tobe, F. Kojima, M. Hamada, T. Takeuchi, and H. Umezawa, Amastatin, an inhibitor of aminopeptidase A, Produced by actinomycetes, J. Antibiot., 31, 636-638 (1978). https://doi.org/10.7164/antibiotics.31.636
  13. B. R. Lampret, J. Kidric, B. Kralj, L. Vitale, M. Pokorny, and M. Renko, Lapstatin, a new aminopeptidase inhibitor produced by Streptomyces rimosus, inhibits autogeneous aminopeptidase, Arch. Microbiol., 171, 397-404 (1999). https://doi.org/10.1007/s002030050726
  14. S. C. Bergmeier and D. M. Stanchina, Acylnitrene route to vicinal amino alcohols. Application to the synthesis of (-)-Bestatin and analogues, J. Org. Chem., 64, 2852-2859 (1999). https://doi.org/10.1021/jo9823893
  15. H. H. Wassermen, M. Xia, A. K. Petersen, M. R. Jorgensen and E. A. Curtis, Synthesis of the peptidic $\alpha$-hydroxy amides phebestin, probestin, and bestatin from $\alpha$-keto amide precursors, Tetrahedron Lett., 40, 6163-6166 (1999). https://doi.org/10.1016/S0040-4039(99)01143-0
  16. B. W. Lee, J. H. Lee, K. C. Jang, J. E. Kang, J. H. Kim, K.-M. Park, and K. H. Park, Diastereoselective synthesis of syn-aminoalcohols via contributing CH-$\pi$ interaction: simple synthesis of (-)-bestatin, Tetrahedron Lett., 44, 5905-5907 (2003). https://doi.org/10.1016/S0040-4039(03)01394-7
  17. N. Gogoi, J. Boruwa, and N. C. Barua, A total synthesis of (-)-bestatin using Shibasaki's asymmetric Henry reaction, Tetrahedorn Lett., 46, 7581-7582 (2005). https://doi.org/10.1016/j.tetlet.2005.08.153
  18. Y. Seo, H. Kim, D. W. Chae, and Y. G. Kim, N-Hydroxymethyl derivatives of $\alpha$-amino aldehydes used for the stereoselective syntheses of $\beta$-amino-$\alpha$-hydroxy acids, Tetrahedron: Asymmetry, 25, 625-631 (2014). https://doi.org/10.1016/j.tetasy.2014.03.012
  19. S. I. Hyun and Y. G. Kim, N-Hydroxymethyl group for configurationally stable N-alkoxycarbonyl $\alpha$-amino aldehydes [1], Tetrahedron Lett., 39, 4299-4302 (1998). https://doi.org/10.1016/S0040-4039(98)00715-1
  20. D. Yoo, J. S. Oh, D.-W. Lee, and Y. G. Kim, Efficient Synthesis of a Configurationally Stable L-Serinal Derivative, J. Org. Chem., 68, 2979-2982 (2003). https://doi.org/10.1021/jo026653a
  21. D. Yoo, J. S. Oh, and Y. G. Kim, The N-Hydroxymethyl group for Stereoselective Conjugate Addition: Application to the synthesis of (-)-statine, Org. Lett., 4, 1213-1215 (2002). https://doi.org/10.1021/ol025653u
  22. D. Yoo, S. Kwon, and Y. G. Kim, Application of the N-hydroxymethyl group to the stereoselective synthesis of (3S,4S)-3-aminodeoxystatine derivatives, Tetrahedron: Asymmetry, 16, 3762-3766 (2005). https://doi.org/10.1016/j.tetasy.2005.10.018
  23. H. Kim, D, Yoo, S. Kwon, and Y. G. Kim, Efficient and stereoselective synthesis of threo-$\beta$-hydroxy-L-glutamic acid via a tandem (Z)-olefination-conjugate addition, Tetrahedron: Asymmetry, 20, 2715-2719 (2009). https://doi.org/10.1016/j.tetasy.2009.11.023
  24. D. Yoo, J. Song, M. S. Kang, E.-S. Kang, and Y. G. Kim, Stereodivergent approach to both syn- and anti- isomers of $\gamma$-amino-$\beta$-hydroxy acids: (3S,4S)- and (3R,4S)-AHPPA derivatives, Tetrahedron: Aymmetry, 22, 1700-1704 (2011). https://doi.org/10.1016/j.tetasy.2011.09.021
  25. B. M. Trost, R. Madsen, S. D. Guile, and B. Brown, Palladium-Catalyzed Enantioselective Synthesis of Carbanucleosides, J. Am. Chem. Soc., 122, 5947-5956 (2000). https://doi.org/10.1021/ja9938837
  26. P. A. Wade, J. K. Murray, S. Shah-Patel, B. A. Palfey, and P. J. Carroll, Tandem Nitroaldol-Dehydration Reactions Employing the Dianion of Phenylsulfonylnitromethane, J. Org. Chem., 65, 7723-7730 (2000). https://doi.org/10.1021/jo0000170
  27. J. Jeon, S.-H. Kim, J. H. Lee, J. S. Oh, D. Y. Park, and Y. G. Kim, Anti-Selective Dihydroxylation Reactions of Monosubstituted and (E)-Ester Conjugated Allylic Amines by Bulkyl our group, Bull. Korean Chem. Soc., 30, 1003 (2009). https://doi.org/10.5012/bkcs.2009.30.5.1003
  28. J. Jeon, N. Shin, and Y. G. Kim, Stereocontrolled Dihydroxylation Reactions of Acyclic Allylic Amines, Appl. Chem. Eng., 25, 437-446 (2014). https://doi.org/10.14478/ace.2014.1113