DOI QR코드

DOI QR Code

Verification of Numerical Analysis Technique of Dynamic Response of Seabed Induced by the Interaction between Seabed and Wave

파랑-지반 상호작용에 의한 해저지반의 동적응답 수치해석법 검증

  • Kang, Gi-Chun (Dam & Watershed Maintenance Dept., K-water) ;
  • Kim, Sung-Woung (Dept. of Civil and Environmental Engrg., Korea Maritime and Ocean Univ.) ;
  • Kim, Tae-Hyung (Dept. of Civil Engrg., Korea Maritime and Ocean Univ.) ;
  • Kim, Do-Sam (Dept. of Civil Engrg., Korea Maritime and Ocean Univ.) ;
  • Kim, Jae-Hong (Infrastructure Research Center KWIE, K-water)
  • 강기천 (한국수자원공사 댐.유역관리처) ;
  • 김성웅 (한국해양대학교 토목환경공학과) ;
  • 김태형 (한국해양대학교 건설공학과) ;
  • 김도삼 (한국해양대학교 건설공학과) ;
  • 김재홍 (한국수자원공사연구소)
  • Received : 2014.09.22
  • Accepted : 2015.01.08
  • Published : 2015.01.31

Abstract

Seabed may undergo large excess pore water pressure in the case of long duration of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. Thus, it is necessary to develop a numerical technique which can precisely evaluate the dynamic response of seabed due to wave action. In this study, a new numerical technique named mixed model (2D NIT & FLIP models) was proposed. The dynamic wave pressure and water flow velocity acting on the boundary between seabed and the wave field was estimated using 2D-NIT model. This result was used as input data in FLIP program for investigation of dynamic response of seabed. To secure the reliability of the mixed model, the numerical analysis results of the mixed model were compared with Yamamoto's solution and Chang's experiment results. The comparison results indicated that there were some differences between them, but the general trend of the effective stress increment and the excess pore water pressure along the depth of seabed was similar to each other. Thus, this study clearly supports the plausibility of the numerical analysis of the mixed model.

해저지반에 고파랑이 장시간 지속적으로 작용하는 경우 과잉간극수압이 크게 발생할 수 있고, 이로 인한 유효응력의 감소로 최악의 경우는 액상화를 유발할 수 있다. 따라서, 파작용에 의한 발생되는 해저지반의 동적응답을 정확히 예측할 수 있는 수치해석방법이 필요하다. 본 연구에서는 복합모델(2D-NIT 모델 & FLIP 모델)을 사용한 새로운 수치 해석법을 제안하였다. 해저지반과 파동장이 접하는 경계면상에서 작용하는 파압과 유속을 2D-NIT모델로부터 산정하고, 이를 해저지반상의 외력으로 입력하여 FLIP으로부터 해저지반의 동적응답 거동을 조사하는 것이다. 복합모델의 신뢰성 확보를 위해 본 연구에서는 2D-NIT & FLIP 모델에 의한 수치해석결과를 기존의 Yamamoto 이론해 및 Chang 실험결과와 비교하였다. 그 결과 2D-NIT & FLIP 해석값과 차이는 있지만, 전체적으로 깊이에 따라 지반내의 유효응력 증분과 과잉간극수압증분의 변화양상이 상당히 잘 일치하고 있기 때문에 본 연구에서 제안된 2D-NIT & FLIP모델이 상당한 타당성을 가지고 있음을 확인 할 수 있었다.

Keywords

References

  1. Kang, G. C., Tobita, T., and Iai, S. (2014), "Seismic Simulation of Liquefaction-induced Uplift Behavior of a Hollow Cylinder Structure Buried in Shallow Ground", Soil Dynamics and Earthquake Engineering, Vol.64, pp.85-94. https://doi.org/10.1016/j.soildyn.2014.05.006
  2. Biot, M. A. (1941), "General Theory of Three-dimensional Consolidation", J. of Applied Physics, Vol.12, pp.155-165. https://doi.org/10.1063/1.1712886
  3. Chang, S. C., Chien, L. K., Lin, J. G., and Chiu, Y. F. (2007), "An Experimental Study on Progressive Wave-induced Stresses Duration in Seabed Soil", J. of Marine Science and Technology, Vol.15, No.2, pp.129-140.
  4. Cheng, L., Sumer, B. M., and Fredsøe, J. (2001), "Solutions of Pore Pressure Build up due to Progressive Waves", Intl. J. for Numerical and Analytical Methods in Geomechanics, Vol.25, pp.885-907. https://doi.org/10.1002/nag.159
  5. Das, B. M. (2006), Principles of Geotechnical Engineering (6th Edition), Thomson.
  6. Hirt, C. W. and Nichols, B. D. (1981), "Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries", J. of Computational Physics, Vol.39, pp.201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  7. Hsu, J. R. C. and Jeng, D. S. (1994), "Wave-induced Soil Response in an Unsaturated Anisotropic Seabed of Finite Thickness", Intl. J. for Numerical Analytical Methods in Geomechanics, Vol.18, No.11, pp.785-807. https://doi.org/10.1002/nag.1610181104
  8. Iai, S., Matsunaga, Y., and Kameoka, T. (1992a), "Strain Space Plasticity Model for Cyclic Mobility", Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Eng., Vol.32, No.2, pp.1-15.
  9. Iai, S., Matsunaga, Y., and Kameoka, T. (1992b), "Analysis of Undrained Cyclic Behavior of Sand under Anisotropic Consolidation", Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Eng., Vol.32, No.2, pp.16-20.
  10. Jeng, D. S. (1997), Wave-induced Seabed Response in Front of a Breakwater, PhD thesis, Univ. of Western Australia.
  11. Jeng, D. S, Seymour, B., and Li, J. (2006), A New Approximation for Pore Pressure Accumulation in Marine Sediment due to Water Waves, Research Report No.R868, The Univ. of Sydney, Australia, 28pp.
  12. Jeng, D. S. and Hsu, J. R. C. (1996), "Wave-induced Soil Response in a Nearly Saturated Seabed of Finite Thickness", Geotechnique, Vol.46, No.3, pp.427-440. https://doi.org/10.1680/geot.1996.46.3.427
  13. Kianoto, T. and Mase, H. (1999), "Boundary-layer Theory for Anisotropic Seabed Response to Sea Waves", J. of Waterway, Port, Coastal and Ocean Eng., ASCE, Voi.125, No.4, pp.187-194. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:4(187)
  14. Lee, K. H., Park, J. H., Cho, S., and Kim, D. S. (2013), "Numerical Simulation of Irregular Airflow in OWC Wave Generation System considering Sea Water Exchange", Journal of Korean Society of Coastal and Ocean Eng., Vol.25, No.3, pp.128-137. https://doi.org/10.9765/KSCOE.2013.25.3.128
  15. Li, J. and Jeng, D. S. (2008), "Response of a Porous Seabed around Breakwater Heads", Ocean Eng., Vol.35, pp.864-886. https://doi.org/10.1016/j.oceaneng.2008.01.021
  16. Madsen, O. S. (1978), "Wave-induced Pore Pressure and Effective Stresses in a Porous Bed", Geotechnique, Vol.28, pp.377-393. https://doi.org/10.1680/geot.1978.28.4.377
  17. McDougal, W. G., Tsai, Y. T., Liu, P. L. -F., and Clukey, E. C. (1989), "Wave-induced Pore Water Pressure Accumulation in Marine Soils", J. of Offshore Mechanics and Arctic Eng., ASME, Vol.111, No.1, pp.1-11. https://doi.org/10.1115/1.3257133
  18. Mei, C. C. and Foda, M. A. (1981), "Wave-induced Response in a Fluid-filled Poroelastic Solid with a Free Surface - A Boundary Layer Theory", Geophysical J. of the Royal Astrological Society, Vol.66, pp.597-631. https://doi.org/10.1111/j.1365-246X.1981.tb04892.x
  19. Miyamoto, J., Sassa, S., and Sekiguchi, H. (2004), "Progressive Solidification of a Liquefied Sand Layer during Continued Wave Loading", Geotechnique, Vol.54, No.10, pp.617-629. https://doi.org/10.1680/geot.2004.54.10.617
  20. Okusa, S. (1985), "Wave-induced Stresses in Unsaturated Submarine Sediments", Geotechnique, Vol.32, No.3, pp.235-247. https://doi.org/10.1680/geot.1982.32.3.235
  21. Ozutsmi, O., Sawada, S., Iai, S., Takeshima, Y., Sugiyama, W., and Shimasu, T. (2002), "Effective Stress Analysis of Liquefaction-induced Deformation in River Dikes", J. of Soil Dynamics and Earthquake Eng., Vol.22, pp.1075-1082. https://doi.org/10.1016/S0267-7261(02)00133-1
  22. Sakakiyama, T. and Kajima, R. (1992), "Numerical Simulation of Nonlinear Wave Interaction with Permeable Breakwater", Proceedings of the 22nd ICCE, ASCE, pp.1517-1530.
  23. Sassa, S. and Sekiguchi, H. (1999), "Analysis of Wave-induced Liquefaction of Beds of Sand in Centrifuge", Geotechnique, Vol.49, No.5, pp.621-638. https://doi.org/10.1680/geot.1999.49.5.621
  24. Sassa, S. and Sekiguchi, H. (2001), "Analysis of Wave-induced Liquefaction of Sand Beds", Geotechnique, Vol.51, No.12, pp.115-126. https://doi.org/10.1680/geot.2001.51.2.115
  25. Sassa, S., Sekiguchi, H., and Miyamoto, J. (2001), "Analysis of Progressive Liquefaction as a Moving-boundary Problem", Geotechnique, Vol.51, No.10, pp.847-857. https://doi.org/10.1680/geot.2001.51.10.847
  26. Seed, H. B. and Rahman, M. S. (1978), "Wave-induced Pore Pressure in Relation to Ocean Floor Stability of Cohesionless Soil", Marine Geotechnology, Vol.3, No.2, pp.123-150. https://doi.org/10.1080/10641197809379798
  27. Seed, H. B., Martin, P. O., and Lysmer, J. (1975), The Generation and Dissipation of Pore Water Pressure during Soil Liquefaction, Report EERC 75-26, Univ. of California, Berkeley, California.
  28. Sekiguchi, H., Kita, K., and Okamoto, O. (1995), "Response of Poro-elastoplastic Beds to Standing Waves", Soils and Foundations, Vol.35, No.3, pp.31-42. https://doi.org/10.3208/sandf.35.31
  29. Sumer, B. M. and Fredsoe, J. (2002), The Mechanics of Scour in the Marine Environment, World Scientific, 536pp.
  30. Towhata, I. and Ishihara, K. (1985), "Modeling Soil Behaviour under Principal Stress Axes Rotation", Proceeding of the 5th Intl. Conference on Numerical Method in Geomechanics, Vol.1, pp.523-530.
  31. Yamamoto, T., Koning, H., Sllmejjer, H., and Van Hijum, E. (1978), "On the Response of a Poroelastic Bed to Water Waves", J. of Fluid Mechanics, Vol.87, pp.193-206. https://doi.org/10.1017/S0022112078003006
  32. Yuhi, M. and Ishida, H. (2002), "Simplified Solution of Waveinduced Seabed Response in Anisotropic Seabed, J. of Waterway, Port", Coastal and Ocean Eng., ASCE, Vol.128, No.1, pp.46-50. https://doi.org/10.1061/(ASCE)0733-950X(2002)128:1(46)