Highly-conformal Ru Thin Films by Atomic Layer Deposition Using Novel Zero-valent Ru Metallorganic Precursors and $O_2$ for Nano-scale Devices

  • Published : 2015.02.01

Abstract

Ruthenium (Ru) thin films were grown on thermally-grown $SiO_2$ substrates by atomic layer deposition (ALD) using a sequential supply of four kinds of novel zero-valent Ru precursors, isopropyl-methylbenzene-cyclohexadiene Ru(0) (IMBCHDRu, $C_{16}H_{22}Ru$), ethylbenzen-cyclohexadiene Ru(0) (EBCHDRu, $C_{14}H_{18}Ru$), ethylbenzen-ethyl-cyclohexadiene Ru(0) (EBECHDRu, $C_{16}H_{22}Ru$), and (ethylbenzene)(1,3-butadiene)Ru(0) (EBBDRu, $C_{12}H_{16}Ru$) and molecular oxygen (O2) as a reactant at substrate temperatures ranging from 140 to $350^{\circ}C$. It was shown that little incubation cycles were observed for ALD-Ru processes using these new novel zero-valent Ru precursors, indicating of the improved nucleation as compared to the use of typical higher-valent Ru precursors such as cyclopentadienyl-based Ru (II) or ${\beta}$-diketonate Ru (III) metallorganic precursors. It was also shown that Ru nuclei were formed after very short cycles (only 3 ALD cycles) and the maximum nuclei densities were almost 2 order of magnitude higher than that obtained using higher-valent Ru precursors. The step coverage of ALD-Ru was excellent, around 100% at on a hole-type contact with an ultra-high aspect ratio (~32) and ultra-small trench with an aspect ratio of ~ 4.5 (top-opening diameter: ~ 25 nm). The developed ALD-Ru film was successfully used as a seed layer for Cu electroplating.

Keywords