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I. INTRODUCTION 

The planar transmission line with a spiral-shaped defect in 

the ground plane is one of the most popular slot-shaped de-

fected ground structures (DGSs) [1]. Based on this structure, 

several modified slot-shaped DGSs have been proposed to com-

ply with required performances [2-8]. In terms of circuit mo-

deling, many other researchers have presented equivalent circuits 

for various slot-shaped DGSs. Simple lumped elements circuit 

models [8, 9] and geometric models based on transmission li-

nes were proposed in [10-13]. These efforts have provided im-

proved physical insight into the operation principle of the  

DGS. 

The stepped impedance resonator (SIR) is used in the filter 

design in order to push the spurious pass-band to a higher 

frequency range [14, 15] and to reduce the circuit size [16]. In 

addition, this resonator has become very popular in the design of 

dual-band filters since the dual pass-band behavior can easily 

control the second pass-band [17]. 

In this paper, we describe the dual-band property of the 

microstrip line with a stepped impedance slot-line DGS in the 

ground plane. This paper also proposes an equivalent circuit 

model that provides insight into the coupling mechanism bet-

ween the microstrip line and the stepped impedance slot-line, as 

well as a technique for obtaining analytic expression of the re-

sonance frequencies. 

II. CIRCUIT MODEL AND RESONANCE PROPERTIES 

The configurations of the proposed stepped impedance slot-

line DGS on the ground plane of the microstrip line are shown 

in Fig. 1, where two short-circuited stepped impedance slot-

lines with different characteristic impedances Z1 and Z2 and 

electrical lengths 1 1 1( )θ β l  and 2 2 2( )θ β l  are connected by a 

narrow etched gap. In the DGS, the narrow etched gap can be 

modeled as a quasi-static capacitance [18]. The transmission 

line model for the etched pattern on the ground plane is shown 

in Fig. 2(a), in which two stepped impedance slot-lines are 

short-ended and are connected in parallel with a gap capaci- 
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Fig. 1. Configurations of the microstrip line with a stepped impedance 

slot-line defected ground structure (DGS) in the ground plane. 

(a) w1 < w2. (b) w1 > w2. 

 

 
Fig. 2. (a) Short-ended slot-line model and (b) equivalent inductance 

model for the etched pattern in the ground plane. (c) Lumped 

element equivalent circuit model for a microstrip line with 

stepped impedance slot-lines. 
 

tance of 2Cs. In order for the etched pattern in the ground   

pla-ne to operate as a resonant circuit, the input impedance 

( )in inZ jX  of the stepped impedance slot-line must have an 

inductive reactance as 
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The transmission line model of the stepped impedance slot-

lines is replaced by an equivalent circuit as depicted Fig. 2(b), 

where the equivalent inductance is 
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Here, c is the speed of light, and 1eε  and 2eε  represent the 

effective permittivity of the first and the second slot-lines, 

respectively.  

Based on the equivalent resonance model of the etched 

pattern on the ground plane, the equivalent circuit model of  

the microstrip line with stepped impedance slot-line DGS is 

shown in Fig. 2(c) [13]. The L and the C are the inductance and 

the capacitance of the microstrip line corresponding to the 

length occupied by the DGS. The DGS on the ground plane is 

modeled as a parallel resonant circuit with inductance ( )sL ω

and capacitance sC that is coupled to the microstrip line th-

rough mutual inductance, mL . 

In the design of a DGS, it is important to find an analytic 

expression for the resonance frequency, which can be directly 

derived from the dimensions of the etched pattern. From Fig. 

2(c), the resonance angular frequency is 
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By substituting Eq. (2) for 0( )sL ω  in Eq. (3), we can finally 

obtain the following expression  
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The closed-form expression for the effective permittivity and 

the characteristic impedance of the slot-line were reported in 

[19]. The narrow etched gap on the ground plane can be mo-

deled as a microstrip gap [18], and a closed-form expression for 

microstrip gap capacitance 2Cs can be obtained from [11]. With 

the help of MATLAB, we can calculate the fundamental re-

sonance frequency and the spurious resonance frequencies from 

Eq. (4). 

For the proposed structure, it would be of interest to see how 

the fundamental resonance frequency (fr) and the first spurious 

resonance frequency (fs1) change as the slot width ratio (w2/w1) 

and the slot length ratio (l2/l1) are modified. To simplify the 

proposed structure, we chose the slot-line lengths l1 = l2 = 12 

mm. 

For the dimensions l1 = l2 =12 mm and g = 0.3 mm, the 

fundamental resonance frequencies, the first spurious resonance 

frequencies, and the normalized first spurious resonance fre-

quencies (η =  fs1/fr) of the proposed structure are calculated for 

the changes in the slot-line width, and are summarized in Table 

1. In the design, a circuit board RO3010 with a dielectric 

constant of 10.2, copper thickness of 0.016 mm, and substrate 

thickness of 1.27 mm is used. The characteristic impedance of  (2)
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Table 1. Calculated fundamental resonance frequencies, first spurious 

resonance frequencies, and normalized first spurious reso-

nance frequencies for various slot widths (l1 = l2 = 12 mm) 

w1 = 0.3 mm w2 = 0.3 mm

w2 

(mm) 

fr 

(GHz) 

fs1 

(GHz) 

η 
(=fs1/fr) 

w1 

(mm)

fr 

(GHz) 

fs1 

(GHz)

η 
(=fs1/fr) 

0.3 1.653 4.513 2.730 0.3 1.653 4.513 2.730

0.6 1.579 4.662 2.919 0.6 1.770 4.468 2.524

0.9 1.571 4.778 3.041 0.9 1.855 4.450 2.399

1.2 1.565 4.872 3.113 1.2 1.919 4.442 2.315

 
the microstrip line is designed to be 50 Ω (w = 1.2 mm). When 

the width of the first slot-line is fixed as w1 = 0.3 mm, the 

normalized first spurious resonance frequency η increases as the 

width of the second slot-line (w2) grows. In addition, for the 

fixed width of the second slot-line with w2 = 0.3 mm, it is 

confirmed that the calculated normalized first spurious reso-

nance frequency η decreases as the width of the first slot-line 

 

 
    (a) 

 
    (b) 

Fig. 3. Comparative resonance frequencies between EM simulation 

and calculation. (a) w1 is fixed at 0.3 mm. (b) w2 is fixed at 0.3 

mm. 

 
 

Fig. 4. S-parameters from the EM simulation and the measurement. 

 

 
Fig. 5. View of the bottom of the fabricated defected ground structure. 

 

grows. From the results in Table 1, it becomes evident that the 

normalized first spurious resonance frequencies can be control-

led by the width ratio (slot impedance ratio), and this is the 

special feature of the SIR [17]. 

We compared the predicted results of the proposed model 

with the EM simulated results. The simulation was performed 

using EM software HFSS version 11 (ANSYS Inc., Canons-

burg, PA, USA). The resonance frequencies and the first spu-

rious resonance frequencies from the proposed model and those 

from EM simulation are plotted in Fig. 3 as the slot width ratio 

changes. In the proposed circuit model, we ignored the influence 

of the step and short discontinuities in the slot-line, since no 

analytical results are available for various slot-line discontinuities. 

The discrepancies may be attributed to these factors. However, 

the predicted results of the proposed model agree with the EM 

simulated results.  

Fig. 4 illustrates the comparative S-parameters from the EM 

simulation (HFSS) and the measurement of a fabricated DGS 

with the dimensions l1 = l2 = 9 mm, w1 =  0.9 mm, w2 =  0.3  
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mm, and g = 0.3 mm (Fig. 5). The characteristic impedance of 

the microstrip line is designed to be 50 Ω (w = 1.2 mm). The 

normalized first spurious resonance frequencies obtained from 

the EM simulation and the measurement are 2.32 and 2.23, 

respectively. 

III. CONCLUSION 

This paper has presented an analytical expression for the re-

sonance frequencies and the equivalent circuit model of a DGS 

with stepped impedance slot-lines in the ground plane of the 

microstrip line. The theoretical prediction was in reasonable 

quantitative agreement with the EM simulated resonance pro-

perty. 
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