DOI QR코드

DOI QR Code

CONIC REGULAR FUNCTIONS OF CONIC QUATERNION VARIABLES IN THE SENSE OF CLIFFORD ANALYSIS

  • Kim, Ji Eun (Department of Mathematics, Pusan National University) ;
  • Shon, Kwang Ho (Department of Mathematics, Pusan National University)
  • Received : 2014.12.22
  • Accepted : 2015.01.08
  • Published : 2015.01.31

Abstract

The aim of this paper is to research certain properties of conic regular functions of conic quaternion variables in $\mathbb{C}^2$. We generalize the properties of conic regular functions and the Cauchy theorem of conic regular functions in conic quaternion analysis.

Keywords

References

  1. C. M. Davenport, Commutative hypercomplex mathematics, Comcast.net/ cmdaven/burgers.htm., (2008).
  2. J. Kajiwara, X. D. Li, and K. H. Shon, Regeneration in Complex, Quaternion and Clifford analysis, Proc. the 9th(2001) Internatioal Conf. on Finite or Infinite Dimensional Complex Analysis and Applications, Advances in Complex Analysis and Its Applications Vol. 2, Kluwer Academic Publishers (2004), 287-298.
  3. J. Kajiwara, X. D. Li, and K. H. Shon, Function spaces in Complex and Clifford Analysis, Inhomogeneous Caychy Riemann system of quaternion and Clifford analysis in ellipsoid, Proc. the 14th Internatioal Conf. on Finite or Infinite Dimensional Complex Analysis and Applications, Hue, Viet Nam, Hue Univ., 14 (2006), 127-155.
  4. J. E. Kim, S. J. Lim and K. H. Shon, Taylor series of functions with values in dual quaternion, J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 20 (2013), no. 4, 251-258. https://doi.org/10.7468/jksmeb.2013.20.4.251
  5. J. E. Kim, S. J. Lim and K. H. Shon, Regular functions with values in ternary number system on the complex Clifford analysis, Abstr. Appl. Anal. 2013, Article ID. 136120 (2013), 7 pages.
  6. J. E. Kim, S. J. Lim and K. H. Shon, Regularity of functions on the reduced quaternion field in Clifford analysis, Abstr. Appl. Anal. 2014 Article ID. 654798 (2014), 8 pages.
  7. J. E. Kim and K. H. Shon, The Regularity of functions on Dual split quaternions in Clifford analysis, Abstr. Appl. Anal. 2014 Article ID. 369430 (2014), 8 pages.
  8. H. Koriyama, H. Mae, K. Nono, Hyperholomorphic Fucntions and Holomorphic Functions in Quaternionic Analysis, Bull. Fukuoka Univ. Education, 60 part III (2011), 1-9.
  9. S. J. Lim and K. H. Shon, Hyperholomorphic fucntions and hyperconjugate harmonic functions of octonion variables, J. Inequal. Appl. 77 (2013), 1-8.
  10. S. J. Lim and K. H. Shon, Dual quaternion functions and its applications, J. Appl. Math. Article ID. 583813 (2013), 6 pages.
  11. C. Muses, Applied hypernumbers: computational concepts, Appl. Math. Comput. 3 (3) (1977), 211226.
  12. C. Muses, Hypernumbers and time operators, Appl. Math. Comput. 12 (2-3) (1983), 139167.
  13. K. Nono, Hyperholomorphic functions of a quaternion variable, Bull. Fukuoka Univ. Ed. 32 (1983), 21-37.
  14. K. Nono, Domains of Hyperholomorphic in ${\mathbb{C}}^2$ ${\time}$${\mathbb{C}}^2$, Bull. Fukuoka Univ. Ed. 36 (1987), 1-9.
  15. A. Sudbery, Quaternionic analysis, Math. Proc. Camb. Phil. Soc., 85 (1979), 199-225. https://doi.org/10.1017/S0305004100055638