References
- M. Abbas, D. Ilic and M. A. Khan, Coupled coincidence point and coupled fixed point theorems in partially ordered metric spaces with u-distance, Fixed Point Theory Appl. 2010 (2010) Article ID 134897, 11 pages.
- M. Abbas, L. Ciric, B. Damjanovic and M. A. Khan, Coupled coincidence point and common fixed point theorems for hybrid pair of mappings, Fixed Point Theory Appl. doi:10.1186/1687-1812-2012-4 (2012).
- S. Banach, Sur les Operations dans les Ensembles Abstraits et leur. Applications aux Equations Integrales, Fund. Math. 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181
-
V. Berinde, Coupled fixed point theorems for
${\varphi}$ - contractive mixed monotone mappings in partially ordered metric spaces, Nonlinear Anal. 75 (2012), 3218-3228. https://doi.org/10.1016/j.na.2011.12.021 - T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), no. 7, 1379-1393. https://doi.org/10.1016/j.na.2005.10.017
- B. S. Choudhury and A. Kundu, A coupled coincidence point results in partially ordered metric spaces for compatible mappings, Nonlinear Anal. 73 (2010), 2524-2531. https://doi.org/10.1016/j.na.2010.06.025
- B. Deshpande, Common fixed point for set and single valued functions without conti-nuity and compatibility, Mathematica Moravica 11 (2007), 27-38.
- B. Deshpande and R. Pathak, Fixed point theorems for noncompatible discontinuous hybrid pairs of mappings on 2- metric spaces, Demonstratio Mathematica, XLV (2012), no. 1, 143-154.
- B. Deshpande and S. Chouhan, Common fixed point theorems for hybrid pairs of map-pings with some weaker conditions in 2-metric spaces, Fasciculi Mathematici, 46 (2011), 37-55.
- B. Deshpande and S. Chouhan, Fixed points for two hybrid pairs of mappings satisfying some weaker conditions on noncomplete metric spaces, Southeast Asian Bull. Math. 35 (2011), 851-858.
- B. Deshpande, S. Sharma and A. Handa, Tripled fixed point theorem for hybrid pair of mappings under generalized nonlinear contraction, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 21 (2014), no. 1, 23-38. https://doi.org/10.7468/jksmeb.2014.21.1.23
- H. S. Ding, L. Li and S. Radenovic, Coupled coincidence point theorems for generalized nonlinear contraction in partially ordered metric spaces, Fixed Point Theory Appl. 2012, 2012:96.
- I. Kubiaczyk and B. Deshpande, Coincidence point for noncompatible multivalued map-pings satisfying an implicit relation, Demonstratio Mathematica XXXIX (2006), no. 4, 555-562.
- I. Kubiaczyk and B. Deshpande, A common fixed point theorem for multivalued mappings through T-weak commutativity, Mathematica Moravica 10 (2006), 55-60.
- I. Kubiaczyk and B. Deshpande, Common fixed point of multivalued mappings without continuity, Fasciculi Mathematici 37 (2007), no. 9, 19-26.
- I. Kubiaczyk and B. Deshpande, Noncompatibility, discontinuity in consideration of common fixed point of set and single valued mappings, Southeast Asian Bull. Math. 32 (2008), 467-474.
- V. Lakshmikantham and L. Ciric, Coupled fixed point theorems for nonlinear contrac-tions in partially ordered metric spaces, Nonlinear Anal. 70 (2009), no. 12, 4341-4349. https://doi.org/10.1016/j.na.2008.09.020
- N. V. Luong and N. X. Thuan, Coupled fixed points in partially ordered metric spaces and application, Nonlinear Anal. 74 (2011), 983-992. https://doi.org/10.1016/j.na.2010.09.055
-
M. Jain, K. Tas, S. Kumar and N. Gupta, Coupled common fixed point results involving a
${\varphi}$ -${\psi}$ contractive condition for mixed g-monotone operators in partially ordered metric spaces, J. Inequal. Appl. 2012, 2012:285. https://doi.org/10.1186/1029-242X-2012-285 - J. T. Markin, Continuous dependence of fixed point sets, Proceedings of the American Mathematical Society, 38 (1947), 545-547.
- S. B. Nadler, Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475-488. https://doi.org/10.2140/pjm.1969.30.475
- B. Samet, Coupled fixed point theorems for generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal. 72 (2010), 4508-4517. https://doi.org/10.1016/j.na.2010.02.026
- B. Samet and H. Yazidi, Coupled fixed point theorems in partially ordered F-chainable metric spaces, TJMCS 1 (2010), 142-151.
- B. Samet and C. Vetro, Coupled fixed point, F-invariant set and fixed point of N-order, Ann. Funct. Anal. 1 (2010), 46-56. https://doi.org/10.15352/afa/1399900586
- S. Sharma and B. Deshpande, Compatible multivalued mappings satisfying an implicit relation, Southeast Asian Bull. Math. 30 (2006), 535-540.
- S. Sharma and B. Deshpande, Fixed point theorems for set and single valued mappings without continuity and compatibility, Demonstratio Mathematica XL (2007), no. 3, 649-658.
- S. Sharma, B. Deshpande and R. Pathak, Common fixed point theorems for hybrid pairs of mappings with some weaker conditions, Fasciculi Mathematici 39 (2008), 71-84.
Cited by
- COMMON COUPLED FIXED POINT THEOREM UNDER GENERALIZED MIZOGUCHI-TAKAHASHI CONTRACTION FOR HYBRID PAIR OF MAPPINGS GENERALIZED MIZOGUCHI-TAKAHASHI CONTRACTION vol.22, pp.3, 2015, https://doi.org/10.7468/jksmeb.2015.22.3.199
- TRIPLED COINCIDENCE AND COMMON TRIPLED FIXED POINT THEOREM FOR HYBRID PAIR OF MAPPINGS SATISFYING NEW CONTRACTIVE CONDITION vol.32, pp.5, 2015, https://doi.org/10.7858/eamj.2016.049