DOI QR코드

DOI QR Code

Doppler Frequency Estimation for Time-Varying Underwater Acoustic Communication Channel

시변 수중음향통신 채널을 위한 도플러 주파수 추정

  • Received : 2014.09.25
  • Accepted : 2014.12.12
  • Published : 2015.01.30

Abstract

Underwater acoustic communication channels have very complex channel characteristics caused by time-varying sea surface, submarine topography, sound speed, and geometry between transmitter and receiver. Especially, the channel has time-variance and doppler effect due to wind and sea current. We have to recognize the channel state and apply it to communication technique for increasing transmission efficiency in the underwater acoustic channel. In this paper, we present the frame recursive modulation and demodulation method using ambiguity function and autocorrelation function to estimate the doppler frequency. Furthermore, we conducted the simulation and sea experiment to evaluate the performance of the proposed method. When the channel coding technique was not used, the bit error rate performance of the proposed method was improved about 32 % compared with conventional method.

수중음향통신 채널은 해수면의 시변동성, 해저지형, 음속 분포 및 송수신단 사이의 기하학적인 구조 등에 따라 매우 복잡한 형태의 채널 특성을 나타낸다. 특히, 바람과 해류에 의한 시변동성과 도플러 효과를 갖는다. 이러한 수중음향통신 환경에서 전송 효율을 높이기 위해서는 변화하는 채널의 상태를 파악하고 통신기법에 적용시켜야 한다. 이 논문에서는 채널 시변동 매개변수 가운데 도플러 주파수 추정을 위하여 모호 함수와 자기상관 기법을 적용한 프레임 재귀 변복조 방식을 제안하고, 모의실험과 실제 남해에서의 해상실험을 통해 성능을 확인하였다. 해상실험 결과 채널 부호화 기법을 적용하지 않은 경우, 기존의 방법에 비해 제안한 방법의 비트 오류율이 약 32% 향상되었다.

Keywords

References

  1. S. Pack and S. R. Lee, "Marine disasters prediction system model using marine environment monitoring," J. KICS, vol. 38C, no. 3, pp. 263-270, Mar. 2013. https://doi.org/10.7840/kics.2013.38C.3.263
  2. J. H. Jeon, H. C. Cho, C. H. Kim, Y. S. Ryuh, and S. J. Park, "Design and implementation of a micro-modem for underwater acoustic communications," J. KICS, vol. 36, no. 4, pp. 405-411, Apr. 2011. https://doi.org/10.7840/KICS.2011.36B.4.405
  3. T. D. Park, S. R. Lee, B. M. Kim, and J. W. Jung, "Analysis of an optimal iterative turbo equalizer for underwater acoustic communication," J. KICS, vol. 38C, no. 3, pp. 303-310, Mar. 2013. https://doi.org/10.7840/kics.2013.38C.3.303
  4. X. Lurton, An Introduction to Underwater Acoustics: Principles and Applications, Springer, 2002.
  5. T. C. Yang, "Measurements of temporal coherence of sound transmissions through shallow water," J. Acoust. Soc. Am., vol. 120, no. 5, pp. 2595-2614, Nov. 2006. https://doi.org/10.1121/1.2345910
  6. J. Rosen and L. Q. Gothard, Encyclopedia of Physical Science, Facts On File, 2009.
  7. B. S. Sharif, J. Neasham, O. R. Hinton, and A. E. Adams, "Computationally efficient doppler compensation system for underwater acoustic communications," IEEE J. Oceanic Eng., vol. 25, no. 1, pp. 52-61, Jan. 2000. https://doi.org/10.1109/48.820736
  8. S. Tao, "An improved frequency estimator for synchronization of PSK signals with large frequency offset," in Proc. Int. Conf. Wirel. Commun., Netw. Mob. Comput. (WiCOM '08), pp. 1-3, Dalian, China, Oct. 2008.
  9. W. Zhuang, "RLS algorithm with variable forgetting factor for decision feedback equalizer over time-variant fading channels," Wirel. Pers. Commun., vol. 8, pp. 15-29, Aug. 1998. https://doi.org/10.1023/A:1008856607190
  10. M. Siderius and M. B. Porter, "Modeling broadband ocean acoustic transmissions with time-varying sea surface," J. Acoust. Soc. Am., vol. 124, pp. 137-150, Apr. 2008. https://doi.org/10.1121/1.2920959
  11. K. M. Kim, B. C. Gwun, J. W. Han, J. W. Jung, K. Son, and S. Y. Chun, "MIMO underwater communication with sparse channel estimation," Information J., vol. 17, no. 6(A), pp. 2401-2409, Jun. 2014.

Cited by

  1. 수중 음향 채널의 해저 광케이블 간섭 효과 분석 vol.10, pp.9, 2015, https://doi.org/10.13067/jkiecs.2015.10.9.979
  2. 가변 망각인자를 사용한 커널 RLS 알고리즘 vol.40, pp.9, 2015, https://doi.org/10.7840/kics.2015.40.9.1793
  3. 선박 수중 3D 입체 지도 소프트웨어 개발 vol.24, pp.5, 2015, https://doi.org/10.12673/jant.2020.24.5.343