DOI QR코드

DOI QR Code

임의의 토폴로지를 갖는 OFDMA 다중홉 셀룰러 네트워크의 하향링크 간섭 완화를 위한 채널 할당 방법

Interference Aware Downlink Channel Allocation Algorithm to Improve Throughput on OFDMA Cellular Multihop Networks with Random Topology

  • Lim, Sunggook (Yonsei University, Department of Electrical and Electronic Engineering) ;
  • Lee, Jaiyong (Yonsei University, Department of Electrical and Electronic Engineering)
  • 투고 : 2014.11.19
  • 심사 : 2014.12.09
  • 발행 : 2015.01.30

초록

LTE-advanced와 IEEE 802.16m과 같은 차세대 셀룰러 네트워크는 중계기를 이용하여 적은 비용으로 높은 전송률을 제공하며 음영지역을 해소한다. 하지만 중계기에 의해 좁아진 셀 간격 때문에 셀 간 간섭은 심화되며, 특히 OFDMA를 사용하는 셀룰러 네트워크의 하향 액세스 링크(access link)는 많은 양의 데이터를 기지국이나 중계기가 동시에 사용자 단말에게 전송하기 때문에 간섭에 의한 성능저하가 심각하다. 이를 해결하기 위한 기존의 연구는 중계기의 분포를 대칭적으로 가정하였기에 실제 네트워크에 적용하는 것은 불가능하였다. 본 논문에서는 임의의 위치에 설치된 다수의 중계기를 이용하는 다중홉 셀룰러 네트워크에서 셀 간의 간섭을 완화하기 위한 채널할당방안을 제안하여 신호대간섭잡음비(Signal to Interference plus Noise Ratio)를 높이고, 전력 제어에 필요한 제어 메시지의 수를 감소시켜 네트워크의 데이터 전송률을 높이고자 한다.

Upcoming cellular networks such as LTE-advanced and IEEE 802.16m are enhanced by relay stations to support high data rate multimedia services and minimize the shadow zone with low cost. Enhancing the relay stations, however, divides the multihop cellular network into smaller microcells and the distance between microcells is closer, which intends large intra-cell and inter-cell interference. Especially the access link on downlink in the OFDMA cellular network is the throughput bottleneck due to the severe interference caused by base stations and relay stations transmitting large data to mobile stations simultaneously. In this paper, we present interference aware channel allocation algorithm to avoid severe interference on multihop cellular networks with random topology. Proposed algorithm increases SINR(signal to interference plus noise ratio) and decreases number of required control messages for channel allocation, so that increases overall throughput on the networks.

키워드

참고문헌

  1. A. Damnjanovic, J. Montojo, Y. Wei, T. Ji, T. Luo, M. Vajapeyam, T. Yoo, O. Song, and D. Malladi, "A survey on 3GPP heterogeneous networks," IEEE Wirel. Comm., vol. 18, no. 3, pp. 10-21, Jun. 2011. https://doi.org/10.1109/MWC.2011.5876496
  2. S. Y. Park, J. Y. Kim, and D. H. Kim, "Decentralized frequency reuse scheme supporting best-effort services in downlink small-cell network," J. KICS, vol. 38A, no. 4, pp. 360-370, 2013. https://doi.org/10.7840/kics.2013.38A.4.360
  3. Y. Kim, W. Lim, and S. Cho, "Interference aware cost effective coverage extension in multihop relay networks," J. KICS, vol. 37C, no. 12, pp. 1138-1147, 2012. https://doi.org/10.7840/kics.2012.37B.12.1138
  4. S. Lim, H. Jeon, and J. Lee, "Effective frequency reuse scheme for OFDMA cellular multihop networks for improving cell throughput with low outage ratio," J. KICS, vol. 35, no. 12, pp. 1198-1206, 2010.
  5. IEEE Std 802.16j-2009, Jun. 2009.
  6. S. Lim and J. Y. Lee, "Interference avoiding radio resource allocation scheme for multi-hop OFDMA cellular networks with random topology," Int. Conf. Future Generation Commun. Netw., pp. 95-103, Dec. 2010.
  7. Y. Hua, Q. Zhang, and Z. Niu, "Resource allocation in multi-cell OFDMA-based relay networks," INFOCOM, pp. 2133-2141, 2010.
  8. S.-W. Kim, J.-K. Choi, and S.-J. Yoo, "Uplink relaying scheme for efficient frequency usage in cognitive radio networks," J. KICS, vol. 36, no. 4, pp. 356-368, 2011. https://doi.org/10.7840/KICS.2011.36A.4.356
  9. T. C. Y. Ng, W. Yu, J. Zhang, and A. Reid, "Joint optimization of relay strategies and resource allocations in cooperative cellular networks," IEEE J. Selected Areas in Commun., vol. 25, no. 2, pp. 328-339, 2007. https://doi.org/10.1109/JSAC.2007.070209
  10. Y. Zhao, X. Fang, R. Huang, and Y. Fang, "Joint interference coordination and load balancing for OFDMA multihop cellular networks," IEEE Trans. Mob. Comput., vol. 13, no. 1, pp. 89-101, Jan. 2014. https://doi.org/10.1109/TMC.2012.224
  11. R. Wang, V. K. N. Lau, and Y. Cui, "Decentralized fair scheduling in two-hop relay-assisted cognitive OFDMA systems," IEEE J. Selected Topics in Signal Process., vol. 5, no. 1, pp. 171-181, Feb. 2011. https://doi.org/10.1109/JSTSP.2010.2056352
  12. M. Rahman and H. Yanikomeroglu, "Enhancing cell-edge performance: A downlink dynamic interference avoidance scheme with inter-cell coordination," IEEE Trans. Wirel. Commun., vol. 9, no. 4, pp. 1414-1425, Apr. 2010. https://doi.org/10.1109/TWC.2010.04.090256
  13. W. Tao, et al., "Iterative resource allocation for maximizing weighted sum min-rate in downlink cellular OFDMA systems," IEEE Trans. Signal Process., vol. 59, no. 1, pp. 223-234, Jan. 2011. https://doi.org/10.1109/TSP.2010.2078811
  14. G. Senarath, W. Tong, and P. Zhu, et al., "Multi-hop relay system evaluation methodology (channel model and performance metric)," IEEE C802.16j-06/013r3, Feb. 2007.