References
- Abo Al kheer, A., El Hami, A., Kharmanda, M.G. and Mouazen, A.M. (2011), "Reliability-based design for soil tillage machines", J. Terramech., 48(1), 57-64. https://doi.org/10.1016/j.jterra.2010.06.001
- Askey, R. and Wilson, J. (1985), "Some basic hypergeometric polynomials that generalize jacobi polynomials", Memo. Am. Math. Soc. Soc., 319.
- Babuska, I., Tempone, R. and Zouraris, G.E. (2004), "Galerkin finite element approximation of stochastic elliptic partial differential equations", SIAM J. Scientif. Comput., 24, 619-644.
- Babuska, I., Nobile, F. and Tempone, R. (2007), "A stochastic collocation method for elliptic partial differential equations with random input data", SIAM J. Numer. Anal., 45, 1005-1034. https://doi.org/10.1137/050645142
- Begg, C.D., Byington, C.S. and Maynard, K. (2000), "Dynamic simulation of mechanical fault transition", Proceedings of the 54th Meeting of the Society for Machinery Failure Prevention Technology, Virginia Beach, May.
- Blanchard, E., Sandu, A. and Sandu, C. (2009), "Parameter estimation for mechanical systems via an explicit representation of uncertainty", Int. J. Comput. Aid. Eng. Comput., 26, 541-569.
- Cameron, H. and Martin, W. (1947), "The orthogonal development of nonlinear functional in series of Fourier-Hermite functional", Ann. Math., 48, 385-392. https://doi.org/10.2307/1969178
- Crestaux, T., Le Maitre, O. and Martinez, J.M. (2009), "Polynomial chaos expansion for sensitivity analysis. Reliab", Eng. Syst. Saf., 94, 1161-1172. https://doi.org/10.1016/j.ress.2008.10.008
- Dalpiaz, G., Rivola, A. and Rubini, R. (1996), "Dynamic modeling of gear systems for condition monitoring and diagnostics", Congress on Technical Diagnostics.
- El Hami, A., Lallement, G., Minottiand, P. and Cogan, S. (1993), "Methods that combine finite group theory with component mode synthesis in the analysis of repetitive structures", Int. J. Comput. Struct., 48, 975-982. https://doi.org/10.1016/0045-7949(93)90432-D
- El Hami, A. and Radi, B. (1996), "Some decomposition methods in the analysis of repetitive structures", Int. J. Comput. Struct., 58(5), 973-980. https://doi.org/10.1016/0045-7949(95)00206-V
- El Hami, A., Radi, B. and Cherouat, A. (2009), "The frictional contact of the shaping of the composite fabric. International", J. Math. Comput. Model., 49(7-8), 1337-1349. https://doi.org/10.1016/j.mcm.2008.09.016
- Fishman, G.S. (1996), Monte Carlo, Concepts, Algorithms and Applications, First Edition, Springer-Verlag.
- Ghanem, R.G. and Spanos, P.D. (1991), Stochastic Finite Elements: A Spectral Approach, Revised Edition, Springer Verlag.
- Isukapalli, S.S., Roy, A. and Georgopoulos, P.G. (1998a), "Stochastic response surface methods (SRSMs) for uncertainty propagation: application to environmental and biological systems", Risk Anal., 18, 351-363. https://doi.org/10.1111/j.1539-6924.1998.tb01301.x
- Isukapalli, S.S., Roy, A. and Georgopoulos, P.G. (1998b), "Development and application of methods for assessing uncertainty in photochemical air quality problems", Interim Report for U.S.EPA National Exposure Research Laboratory.
- Le Maitre, O.P., Knio, O.M., Najm, H.N. and Ghanem, R.G. (2001), "A stochastic projection method for fluid flow Basic formulation", J. Comput. Phys., 173, 481-511. https://doi.org/10.1006/jcph.2001.6889
- Lindsley, N.J. and Beran, P.S (2005), "Increased efficiency in the stochastic interrogation of an uncertinnonlinear aeroelastic system", International Forum on Aeroelasticity and Structural Dynamics, Munich, Germany, June.
- Mohsine, A. and El Hami, A. (2010), "A Robust Study of Reliability-Based Optimisation Methods under Eigen-frequency", Int. J. Comput. Meth. Appl. Mech. Eng., 199(17-20), 1006-1018. https://doi.org/10.1016/j.cma.2009.11.012
- Papadrakakis, M. and Papadopoulos, V. (1999), "Parallel solution methods for stochastic finite element analysis using Monte Carlo simulation", Comput. Meth. Appl. Mech. Eng., 168, 305-320. https://doi.org/10.1016/S0045-7825(98)00147-9
- Radi, B. and El Hami, A. (2007), "Reliability analysis of the metal forming process", Int. J. Comput. Meth. Appl. Mech. Eng., 45(3-4), 431-439.
- Saad, G., Ghanem, R. and Masri, S. (2007), "Robust system identification of strongly nonlinear dynamics using a polynomial chaos based sequential data assimilation technique", Structural Dynamics and Materials Conference, Honolulu, USA.
- Sandu, A., Sandu, C. and Ahmadian, M. (2006a), "Modeling multibody dynamic systems with uncertainties. Part I: numerical application", Multib. Syst. Dyn., 15, 369-391. https://doi.org/10.1007/s11044-006-9007-5
- Sandu, C., Sandu, A. and Ahmadian, M. (2006b), "Modeling multibody dynamic systems with uncertainties. Part II: theoretical and computational aspects", Multib. Syst. Dyn., 15, 241-262. https://doi.org/10.1007/s11044-006-9008-4
- Sarsri, D., Azrar, L., Jebbouri, A. and El Hami, A. (2011), "Component mode synthesis and polynomial chaos expansions for stochastic frequency functions of large linear FE models", Comput. Struct., 89(3-4), 346-356. https://doi.org/10.1016/j.compstruc.2010.11.009
- Smith, A.H.C., Monti, A. and Ponci, F. (2007), "Indirect measurements via a polynomial chaos observer", IEEE Tran. Instrm. Meas., 56, 743-752. https://doi.org/10.1109/TIM.2007.894914
- Walha, L., Fakhfakh, T. and Haddar, M. (2009), "Nonlinear dynamics of a two-stage gear system with mesh stiffness fluctuation, bearing flexibility and backlash", Mech. Mach. Theo., 44, 1058-1069. https://doi.org/10.1016/j.mechmachtheory.2008.05.008
- Wiener, N. (1938), "The homogeneous chaos", Am. J. Math, 60, 897-936. https://doi.org/10.2307/2371268
- Williams, M.M.R. (2006), "Polynomial chaos functions and stochastic differential equations", Ann. Nucl. Energy, 33, 774-785. https://doi.org/10.1016/j.anucene.2006.04.005
- Xiu, D. and Karniadakis, G.E. (2002), "Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos", Comput. Meth. Appl. Mech. Eng., 191, 4927-4948. https://doi.org/10.1016/S0045-7825(02)00421-8
- Xiu, D. and Karniadakis, G.E. (2003), "Modelling uncertainty in flow simulations via generalized polynomial chaos", J. Comput. Phys., 187, 137-167. https://doi.org/10.1016/S0021-9991(03)00092-5
Cited by
- Dynamic response of wind turbine gear system with uncertain-but-bounded parameters using interval analysis method vol.113, 2017, https://doi.org/10.1016/j.renene.2017.06.028
- A polynomial chaos method for the analysis of the dynamic behavior of uncertain gear friction system vol.59, 2016, https://doi.org/10.1016/j.euromechsol.2016.03.007
- Dynamic vibrations in wind energy systems: Application to vertical axis wind turbine vol.85, 2017, https://doi.org/10.1016/j.ymssp.2016.08.034
- Dynamic response of a Spur gear system with uncertain friction coefficient 2016, https://doi.org/10.1016/j.advengsoft.2016.05.009
- Dynamic behavior of the one-stage gear system with uncertainties vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.443
- Dynamic response analysis of Vertical Axis Wind Turbine geared transmission system with uncertainty vol.139, 2017, https://doi.org/10.1016/j.engstruct.2017.02.028