References
- Abudi, J. and Pindera, M.J. (1996), "Thermoelastic theory for the response of materials functionally graded in two directions", Int. J. Solid. Struct., 33(7), 931-966. https://doi.org/10.1016/0020-7683(95)00084-4
- Arora, J. (2004), Introduction to Optimum Design, 2nd Edition, Academic Press.
- Asgari, M. and Akhlaghi, M. (2009), "Transient heat conduction in two-dimensional functionally graded hollow cylinder with finite length", Heat Mass Trans., 45, 1383-1392. https://doi.org/10.1007/s00231-009-0515-8
- Asgari, M. and Akhlaghi, M. (2010), "Transient thermal stresses in two-dimensional functionally graded thick hollow cylinder with finite length", Arch. Appl. Mech., 80, 353-376. https://doi.org/10.1007/s00419-009-0321-2
- Asgari, M. and Akhlaghi, M. (2011), "Thermo-mechanical analysis of 2D-FGM thick hollow cylinder using graded finite elements", Adv. Struct. Eng., 14, 1059-1073. https://doi.org/10.1260/1369-4332.14.6.1059
- Boresi, B., Peter, A. and Ken, P. (1999), Elasticity in Engineering Mechanics, 2nd Edition,Wiley, New York.
- Boussaa, D. (2009), "Optimization of temperature-dependent functionally graded material bodies", Comput. Meth. Appl. Mech. Eng., 198, 2827-2838. https://doi.org/10.1016/j.cma.2009.02.013
- Brodlie, K., Mashwama, P. and Butt, S. (1995), "Visualization of surface data to preserve positivity and other simple constraints", Comput. Graph., 19, 585-594. https://doi.org/10.1016/0097-8493(95)00036-C
- Chen, B. and Tong, L. (2005), "Thermomechanically coupled sensitivity analysis and design optimization of functionally graded materials", Comput. Meth. Appl. Mech. Eng., 194, 1891-1911. https://doi.org/10.1016/j.cma.2004.07.005
- Cho, J.R. and Choi, J.H. (2004), "A yield-criteria tailoring of the volume fraction in metal-ceramic functionally graded material", Eur. J. Mech. A/Solid, 23, 271-281. https://doi.org/10.1016/j.euromechsol.2003.11.004
- Cho, J.R. and Ha, D.Y. (2009), "Optimal tailoring of 2D volume-fraction distributions for heat-resisting functionally graded materials using FDM", Comput. Meth. Appl., 191, 3195-3211
- Cho, J.R. and Ha, D.Y. (2001), "Thermo-elastoplastic characteristics of heat-resisting functionally graded composite structures", Struct. Eng. Mech., 11(1), 49-70. https://doi.org/10.12989/sem.2001.11.1.049
-
Cho, J.R. and Ha, D.Y. (2002), "Volume fraction optimization for minimizing thermal stress in Ni-
$Al_2O_3$ functionally graded materials", Mater. Sci. Eng., 334, 147-155. https://doi.org/10.1016/S0921-5093(01)01791-9 - Cho, J.R. and Shin, S.W. (2004), "Material composition optimization for heat-resisting FGMs by artificial neural network", Compos. Part A, 35, 585-594. https://doi.org/10.1016/j.compositesa.2003.12.003
- Goupee, A.J. and Vel, S.S. (2007), "Multi-objective optimization of functionally graded materials with temperature-dependent material properties", Mater. Des., 28, 1861-1879. https://doi.org/10.1016/j.matdes.2006.04.013
- Goupee, A.J. and Vel, S.S. (2006), "Two-dimensional optimization of material composition of functionally graded materials using meshless analyses and a genetic algorithm", Comput. Meth. Appl. Mech. Eng., 195, 5926-5948. https://doi.org/10.1016/j.cma.2005.09.017
- Jinhua, H, George, M.F., Vincent, Y.B. and Grujicic, M. (2002), "Bi-objective optimization design of functionally gradient materials", Mater. Des., 23, 657-666. https://doi.org/10.1016/S0261-3069(02)00048-1
- Kim, J.H. and Paulino, G.H. (2002), "Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials", J. Appl. Mech., 69(4), 502-514. https://doi.org/10.1115/1.1467094
- Koizumi, M. (2003), "The concept of FGM, ceramic transaction, functionally graded materials", 34, 3-10.
- Kou, X.Y., Parks, G.T. and Tana, S.T. (2012), "Optimal design of functionally graded materials using a procedural model and particle swarm optimization", Comput. Aid. Des., 44, 300-310. https://doi.org/10.1016/j.cad.2011.10.007
- Lancaster, P. and Alkauskas, K.S. (1986), Curve and Surface Fitting: An Introduction, Academic Press, London.
- Lee, D., Shin, S., Park, H. and Park, S. (2014), "Topological material distribution evaluation for steel plate reinforcement by using CCARAT optimizer", Struct. Eng. Mech., 51(5), 793-808 https://doi.org/10.12989/sem.2014.51.5.793
- MATLAB and Statistics Toolbox Release (2012b), The MathWorks, Inc., Natick, Massachusetts, United States.
- Na, K. and Kim, J.H. (2010), "Volume fraction optimization for step-formed functionally graded plates considering stress and critical temperature", Compos. Struct., 92, 1283-1290. https://doi.org/10.1016/j.compstruct.2009.11.004
- Na, K. and Kim, J.H. (2009), "Volume fraction optimization of functionally graded composite panels for stress reduction and critical temperature", Finite Elem. Anal. Des., 45, 845-851. https://doi.org/10.1016/j.finel.2009.06.023
- Nemat-Alla, M. (2003), "Reduction of thermal stresses by developing two dimensional functionally graded materials", Int. J. Solid. Struct., 40(26), 7339-56. https://doi.org/10.1016/j.ijsolstr.2003.08.017
- Nie, G.J., Zhong, Z. and Batra, R.C. (2011), "Material tailoring for functionally graded hollow cylinders and spheres", Compos. Sci. Tech., 71, 666-673. https://doi.org/10.1016/j.compscitech.2011.01.009
- Rao Singiresu, S. (2009), Engineering Optimization Theory and Practice, Willy.
- Santare, M.H. and Lambros, J. (2000), "Use of a graded finite element to model the behavior of nonhomogeneous materials", J. Appl. Mech., 67(4), 819-822. https://doi.org/10.1115/1.1328089
- Sivanandam, S.N. and Deepa, S.N. (2008), Introduction to Genetic Algorithms, Springer, Berlin Heidelberg New York.
- Takezawa, A., Yoon, G.H., Jeong, S.H. and Kitamura, M. (2014), "Structural topology optimization with strength and heat conduction constraints", Comput. Meth. Appl. Mech. Eng., 276, 341-361. https://doi.org/10.1016/j.cma.2014.04.003
- Takezawa, A and Kitamura, M. (2012), "Geometrical design of thermoelectric generators based on topology optimization", Int. J. Numer. Meth. Eng., 90, 1363-1392. https://doi.org/10.1002/nme.3375
- Turteltaub, S. (2002), "Functionally graded materials for prescribed field evolution", Comput. Meth. Appl. Mech. Eng., 191, 2283-2296. https://doi.org/10.1016/S0045-7825(01)00408-X
- Turteltaub, S. (2002), "Optimal control and optimization of functionally graded materials for thermomechanical processes", Int. J. Solid. Struct., 39, 3175-3197. https://doi.org/10.1016/S0020-7683(02)00243-3
- Vel, S.S. and Pelletier, J.L. (2007), "Multi-objective optimization of functionally graded thick shells for thermal loading", Compos. Struct., 81, 386-400. https://doi.org/10.1016/j.compstruct.2006.08.027
Cited by
- Free vibration analysis of composite cylindrical shells with non-uniform thickness walls vol.20, pp.5, 2016, https://doi.org/10.12989/scs.2016.20.5.1087
- Material optimization of functionally graded heterogeneous cylinder for wave propagation vol.50, pp.25, 2016, https://doi.org/10.1177/0021998315622051
- Thermo mechanical analysis of a ceramic coated piston used in a diesel engine vol.21, pp.2, 2016, https://doi.org/10.12989/scs.2016.21.2.429
- Mechanical stress reduction in a pressurized 2D-FGM thick hollow cylinder with finite length vol.153, 2017, https://doi.org/10.1016/j.ijpvp.2017.05.007
- Nonlinear size-dependent vibration behavior of graphene nanoplate considering surfaces effects using a multiple-scale technique pp.1537-6532, 2018, https://doi.org/10.1080/15376494.2018.1494870
- Effect of magnetic-thermal field on nonlinear wave propagation of circular nanoplates vol.33, pp.17, 2015, https://doi.org/10.1080/09205071.2019.1677271
- Architected functionally graded porous lattice structures for optimized elastic-plastic behavior vol.234, pp.8, 2015, https://doi.org/10.1177/1464420720923004
- Mechanical performance of additively manufactured uniform and graded porous structures based on topology-optimized unit cells vol.235, pp.9, 2021, https://doi.org/10.1177/0954406220947119