References
- ASTM B 557M-10, Standard test methods for tension testing of wrought and cast aluminium-& magnesium-alloy products.
- ASTM B 557M-10, Standard Test Methods for Tension Testing of Wrought and Cast Aluminum-and Magnesium-Alloy Products (Metric), ASTM International, USA.
- ASTM E 647-08, Standard test method for measurement of fatigue crack growth rates.
- ASTM E 647-11, Standard Test Method for Measurement of Fatigue Crack Growth Rates, ASTM International, USA.
- Chu, H.P., Hauser, J.A. and Sikoram, J.P. (1982), "Fatigue crack growth in stiffened panels under pressure loading-design of fatigue and fracture resistant structures", ASTM STP, 761, 345-72.
- Dexter, R.J. and Pilarski, P.J. (2002), "Crack propagation in welded stiffened panels", J. Constr. Steel Res., 58, 1081-102. https://doi.org/10.1016/S0143-974X(01)00094-3
- Ghassem, M.M. and Rich, T.P. (1933), "The fracture diagram: a new design tool for stiffened panels", AIAA J., 21.
- Hosseini-Toudeshky, H., Ghaffari, M.A. and Mohammadi, B. (2013), "Mixed-mode crack propagation of stiffened curved panels repaired by composite patch under combined tension and shear cyclic loading", Aerosp. Sci. Technol., 28(1), 344-363. https://doi.org/10.1016/j.ast.2012.12.001
- Liu, G., Wang, S. and Yang, X. (2012), "A Simple numerical simulation of crack growth rate", Procedia Eng., 31, 557-562. https://doi.org/10.1016/j.proeng.2012.01.1067
- Mahmoud, H.N. and Dexter, R.J. (2005), "Propagation rate of large cracks in stiffened panels under tension loading", Marin. Struct., 18(3), 265-288. https://doi.org/10.1016/j.marstruc.2005.09.001
- Murakami, Y. (1988), Stress intensity factors handbook, Pergamon Press, Oxford.
- Murthy, R.A., Palani, G.S. and Iyer, N.R. (2007), "Remaining life prediction of cracked stiffened panels under constant and variable amplitude loading", Int. J. Fatig., 29(6), 1125-1139. https://doi.org/10.1016/j.ijfatigue.2006.09.016
- Papadakis, V.G. (2013), "Service life prediction of a reinforced concrete bridge exposed to chloride induced deterioration", Adv. Concrete Construct., 1(3), 201-213. https://doi.org/10.12989/acc2013.1.3.201
- Poe, Jr. C.C. (1971), "Fatigue propagation in stiffened panels", ASTM STP, 486, 79-98.
- Rooke, D.P. and Cartwright, D.J. (1976), Compendium of stress intensity factors, Her Majesty's Stationary Office, London.
- Saves, C.S.T., Germes Davy, A. and Barrau, J.J. (2001), "Prediction of the longitudinal crack behaviour of stiffened curved panels", Int. J. Fatig., 23, 147-58. https://doi.org/10.1016/S0142-1123(00)00066-9
- Shih, C.F., Moran, B. and Nakamura, T. (1986), "Energy release rate along a three-dimensional crack front in a thermally stressed body", Int. J. Fract., 30, 79-102.
- Taheri, F., Trask, D. and Pegg, N. (2003), "Experimental and analytical investigation of fatigue characteristics of 350WT steel under constant and variable amplitude loadings", Marin. Struct., 16, 69-91. https://doi.org/10.1016/S0951-8339(02)00004-7
- Wen, P.H., Aliabadi, M.H. and Young, A. (2000), "Stiffened cracked plates analysis by dual boundary element method", Int. J. Fract., 106, 245-258. https://doi.org/10.1023/A:1026583813252
- Wen, P.H., Aliabadi, M.H. and Young, A. (2003), "Fracture mechanics analysis of curved stiffened panels using BEM", Int. J.Solids Struct., 40(1), 219-236 https://doi.org/10.1016/S0020-7683(02)00498-5
Cited by
- Probability analysis of optimal design for fatigue crack of aluminium plate repaired with bonded composite patch vol.61, pp.3, 2015, https://doi.org/10.12989/sem.2017.61.3.325