DOI QR코드

DOI QR Code

Analysis of higher order composite beams by exact and finite element methods

  • He, Guang-Hui (Department of Civil Engineering, Shanghai University) ;
  • Yang, Xiao (Department of Civil Engineering, Shanghai University)
  • Received : 2013.08.13
  • Accepted : 2014.06.28
  • Published : 2015.02.25

Abstract

In this paper, a two-layer partial interaction composite beams model considering the higher order shear deformation of sub-elements is built. Then, the governing differential equations and boundary conditions for static analysis of linear elastic higher order composite beams are formulated by means of principle of minimum potential energy. Subsequently, analytical solutions for cantilever composite beams subjected to uniform load are presented by Laplace transform technique. As a comparison, FEM for this problem is also developed, and the results of the proposed FE program are in good agreement with the analytical ones which demonstrates the reliability of the presented exact and finite element methods. Finally, parametric studies are performed to investigate the influences of parameters including rigidity of shear connectors, ratio of shear modulus and slenderness ratio, on deflections of cantilever composite beams, internal forces and stresses. It is revealed that the interfacial slip has a major effect on the deflection, the distribution of internal forces and the stresses.

Keywords

References

  1. Battini, J.M., Nguyen, Q.H. and Hjiaj, M. (2009), "Non-linear finite element analysis of composite beams with interlayer slips", Comput. Struct., 87(13-14), 904-912. https://doi.org/10.1016/j.compstruc.2009.04.002
  2. Cas, B., Saje, M. and Planinc, I. (2004), "Non-linear finite element analysis of composite planar frames with an interlayer slip", Comput. Struct., 82(23-26), 1901-1912. https://doi.org/10.1016/j.compstruc.2004.03.070
  3. Chakrabarti, A., Sheikh, A., Griffith, M. and Oehlers, D. (2012), "Dynamic response of composite beams with partial shear interaction using a higher-order beam theory", J. Struct. Eng., 139(1), 47-56.
  4. Chakrabarti, A., Sheikh, A.H., Griffith, M. and Oehlers, D.J. (2012), "Analysis of composite beams with longitudinal and transverse partial interactions using higher order beam theory", Int. J. Mech. Sci., 59(1), 115-125. https://doi.org/10.1016/j.ijmecsci.2012.03.012
  5. Chakrabarti, A., Sheikh, A.H., Griffith, M. and Oehlers, D.J. (2012), "Analysis of composite beams with partial shear interactions using a higher order beam theory", Eng. Struct., 36, 283-291. https://doi.org/10.1016/j.engstruct.2011.12.019
  6. Cook, R.D., Malkus, D.S., Plsha, M.E. and Witt, R.J. (2007), Concepts and applications of finite element analysis, John Wiley & Sons.
  7. Dall'Asta, A. and Zona, A. (2002), "Non-linear analysis of composite beams by a displacement approach", Comput. Struct., 80(27-30), 2217-2228. https://doi.org/10.1016/S0045-7949(02)00268-7
  8. Erkmen, R.E. and Attard, M.M. (2011), "Displacement-based finite element formulations for material-nonlinear analysis of composite beams and treatment of locking behaviour", Finite Elem. Anal. Des., 47(12), 1293-1305. https://doi.org/10.1016/j.finel.2011.07.001
  9. Faella, C., Martinelli, E. and Nigro, E. (2002), "Steel and concrete composite beams with flexible shear connection: "exact" analytical expression of the stiffness matrix and applications", Comput. Struct., 80(11), 1001-1009. https://doi.org/10.1016/S0045-7949(02)00038-X
  10. Grognec, P.L., Nguyen, Q.H. and Hjiaj, M. (2012), "Exact buckling solution for two-layer Timoshenko beams with interlayer slip", Int. J. Solid. Struct., 49(1), 143-150. https://doi.org/10.1016/j.ijsolstr.2011.09.020
  11. Hjiaj, M., Battini, J.M. and Huy Nguyen, Q. (2012), "Large displacement analysis of shear deformable composite beams with interlayer slips", Int. J. Nonlin. Mech., 47(8), 895-904. https://doi.org/10.1016/j.ijnonlinmec.2012.05.001
  12. Kroflic, A., Planinc, I., Saje, M., Turk, G. and Cas, B. (2010), "Non-linear analysis of two-layer timber beams considering interlayer slip and uplift", Eng. Struct., 32(6), 1617-1630. https://doi.org/10.1016/j.engstruct.2010.02.009
  13. Kroflic, A., Saje, M. and Planinc, I. (2011), "Non-linear analysis of two-layer beams with interlayer slip and uplift", Comput. Struct., 89(23-24), 2414-2424. https://doi.org/10.1016/j.compstruc.2011.06.007
  14. Li, J., Shi, C., Kong, X., Li, X. and Wu, W. (2013), "Free vibration of axially loaded composite beams with general boundary conditions using hyperbolic shear deformation theory", Compos. Struct., 97(0), 1-14. https://doi.org/10.1016/j.compstruct.2012.10.014
  15. Newmark, N., Siess, C. and Viest, I. (1951), "Tests and analysis of composite beams with incomplete interaction", Proc. Soc. Exp. Stress Anal., 9(1), 75-92.
  16. Nguyen, Q.H., Martinelli, E. and Hjiaj, M. (2011), "Derivation of the exact stiffness matrix for a two-layer Timoshenko beam element with partial interaction", Eng. Struct., 33(2), 298-307. https://doi.org/10.1016/j.engstruct.2010.10.006
  17. Ouyang, Y., Liu, H. and Yang, X. (2012), "Bending of composite beam considering effect of adhesive layer slip", E. M., 29(9), 215-222.
  18. Ranzi, G., Dall'Asta, A., Ragni, L. and Zona, A. (2010), "A geometric nonlinear model for composite beams with partial interaction", Eng. Struct., 32(5), 1384-1396. https://doi.org/10.1016/j.engstruct.2010.01.017
  19. Ranzi, G. and Zona, A. (2007), "A steel-concrete composite beam model with partial interaction including the shear deformability of the steel component", Eng. Struct., 29(11), 3026-3041. https://doi.org/10.1016/j.engstruct.2007.02.007
  20. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
  21. Schnabl, S., Saje, M., Turk, G. and Planinc, I. (2007a), "Locking-free two-layer Timoshenko beam element with interlayer slip", Finite Elem. Anal. Des., 43(9), 705-714. https://doi.org/10.1016/j.finel.2007.03.002
  22. Schnabl, S., Saje, M., Turk, G. and Planinc, I. (2007b), "Analytical solution of two-Layer beam taking into account interlayer slip and shear deformation", J. Struct. Eng., ASCE, 133, 886-894. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:6(886)
  23. Vo, T.P. and Thai, H.T. (2012), "Static behavior of composite beams using various refined shear deformation theories", Compos. Struct., 94(8), 2513-2522. https://doi.org/10.1016/j.compstruct.2012.02.010
  24. Whitney, J. (1973), "Shear correction factors for orthotropic laminates under static load", J. Appl. Mech. Tran., ASME, 40(1), 302-304. https://doi.org/10.1115/1.3422950
  25. Xu, R. and Wang, G. (2012), "Variational principle of partial-interaction composite beams using Timoshenko's beam theory", Int. J. Mech. Sci., 60(1), 72-83. https://doi.org/10.1016/j.ijmecsci.2012.04.012
  26. Xu, R. and Wu, Y. (2007), "Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko's beam theory", Int. J. Mech. Sci., 49(10), 1139-1155. https://doi.org/10.1016/j.ijmecsci.2007.02.006
  27. Yang, X. and He, G. (2014), "General analytical method for composite beams' bending using Reddy's higher order beam theory", C. J. S. M., 35(2), 199-208.
  28. Zona, A. and Ranzi, G. (2011), "Finite element models for nonlinear analysis of steel-concrete composite beams with partial interaction in combined bending and shear", Finite Elem. Anal. Des., 47(2), 98-118. https://doi.org/10.1016/j.finel.2010.09.006

Cited by

  1. Absolute effective elastic constants of composite materials vol.57, pp.5, 2016, https://doi.org/10.12989/sem.2016.57.5.897
  2. Dynamic analysis of partial-interaction Kant composite beams by weak-form quadrature element method pp.1432-0681, 2018, https://doi.org/10.1007/s00419-018-1443-1