References
- Battini, J.M., Nguyen, Q.H. and Hjiaj, M. (2009), "Non-linear finite element analysis of composite beams with interlayer slips", Comput. Struct., 87(13-14), 904-912. https://doi.org/10.1016/j.compstruc.2009.04.002
- Cas, B., Saje, M. and Planinc, I. (2004), "Non-linear finite element analysis of composite planar frames with an interlayer slip", Comput. Struct., 82(23-26), 1901-1912. https://doi.org/10.1016/j.compstruc.2004.03.070
- Chakrabarti, A., Sheikh, A., Griffith, M. and Oehlers, D. (2012), "Dynamic response of composite beams with partial shear interaction using a higher-order beam theory", J. Struct. Eng., 139(1), 47-56.
- Chakrabarti, A., Sheikh, A.H., Griffith, M. and Oehlers, D.J. (2012), "Analysis of composite beams with longitudinal and transverse partial interactions using higher order beam theory", Int. J. Mech. Sci., 59(1), 115-125. https://doi.org/10.1016/j.ijmecsci.2012.03.012
- Chakrabarti, A., Sheikh, A.H., Griffith, M. and Oehlers, D.J. (2012), "Analysis of composite beams with partial shear interactions using a higher order beam theory", Eng. Struct., 36, 283-291. https://doi.org/10.1016/j.engstruct.2011.12.019
- Cook, R.D., Malkus, D.S., Plsha, M.E. and Witt, R.J. (2007), Concepts and applications of finite element analysis, John Wiley & Sons.
- Dall'Asta, A. and Zona, A. (2002), "Non-linear analysis of composite beams by a displacement approach", Comput. Struct., 80(27-30), 2217-2228. https://doi.org/10.1016/S0045-7949(02)00268-7
- Erkmen, R.E. and Attard, M.M. (2011), "Displacement-based finite element formulations for material-nonlinear analysis of composite beams and treatment of locking behaviour", Finite Elem. Anal. Des., 47(12), 1293-1305. https://doi.org/10.1016/j.finel.2011.07.001
- Faella, C., Martinelli, E. and Nigro, E. (2002), "Steel and concrete composite beams with flexible shear connection: "exact" analytical expression of the stiffness matrix and applications", Comput. Struct., 80(11), 1001-1009. https://doi.org/10.1016/S0045-7949(02)00038-X
- Grognec, P.L., Nguyen, Q.H. and Hjiaj, M. (2012), "Exact buckling solution for two-layer Timoshenko beams with interlayer slip", Int. J. Solid. Struct., 49(1), 143-150. https://doi.org/10.1016/j.ijsolstr.2011.09.020
- Hjiaj, M., Battini, J.M. and Huy Nguyen, Q. (2012), "Large displacement analysis of shear deformable composite beams with interlayer slips", Int. J. Nonlin. Mech., 47(8), 895-904. https://doi.org/10.1016/j.ijnonlinmec.2012.05.001
- Kroflic, A., Planinc, I., Saje, M., Turk, G. and Cas, B. (2010), "Non-linear analysis of two-layer timber beams considering interlayer slip and uplift", Eng. Struct., 32(6), 1617-1630. https://doi.org/10.1016/j.engstruct.2010.02.009
- Kroflic, A., Saje, M. and Planinc, I. (2011), "Non-linear analysis of two-layer beams with interlayer slip and uplift", Comput. Struct., 89(23-24), 2414-2424. https://doi.org/10.1016/j.compstruc.2011.06.007
- Li, J., Shi, C., Kong, X., Li, X. and Wu, W. (2013), "Free vibration of axially loaded composite beams with general boundary conditions using hyperbolic shear deformation theory", Compos. Struct., 97(0), 1-14. https://doi.org/10.1016/j.compstruct.2012.10.014
- Newmark, N., Siess, C. and Viest, I. (1951), "Tests and analysis of composite beams with incomplete interaction", Proc. Soc. Exp. Stress Anal., 9(1), 75-92.
- Nguyen, Q.H., Martinelli, E. and Hjiaj, M. (2011), "Derivation of the exact stiffness matrix for a two-layer Timoshenko beam element with partial interaction", Eng. Struct., 33(2), 298-307. https://doi.org/10.1016/j.engstruct.2010.10.006
- Ouyang, Y., Liu, H. and Yang, X. (2012), "Bending of composite beam considering effect of adhesive layer slip", E. M., 29(9), 215-222.
- Ranzi, G., Dall'Asta, A., Ragni, L. and Zona, A. (2010), "A geometric nonlinear model for composite beams with partial interaction", Eng. Struct., 32(5), 1384-1396. https://doi.org/10.1016/j.engstruct.2010.01.017
- Ranzi, G. and Zona, A. (2007), "A steel-concrete composite beam model with partial interaction including the shear deformability of the steel component", Eng. Struct., 29(11), 3026-3041. https://doi.org/10.1016/j.engstruct.2007.02.007
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
- Schnabl, S., Saje, M., Turk, G. and Planinc, I. (2007a), "Locking-free two-layer Timoshenko beam element with interlayer slip", Finite Elem. Anal. Des., 43(9), 705-714. https://doi.org/10.1016/j.finel.2007.03.002
- Schnabl, S., Saje, M., Turk, G. and Planinc, I. (2007b), "Analytical solution of two-Layer beam taking into account interlayer slip and shear deformation", J. Struct. Eng., ASCE, 133, 886-894. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:6(886)
- Vo, T.P. and Thai, H.T. (2012), "Static behavior of composite beams using various refined shear deformation theories", Compos. Struct., 94(8), 2513-2522. https://doi.org/10.1016/j.compstruct.2012.02.010
- Whitney, J. (1973), "Shear correction factors for orthotropic laminates under static load", J. Appl. Mech. Tran., ASME, 40(1), 302-304. https://doi.org/10.1115/1.3422950
- Xu, R. and Wang, G. (2012), "Variational principle of partial-interaction composite beams using Timoshenko's beam theory", Int. J. Mech. Sci., 60(1), 72-83. https://doi.org/10.1016/j.ijmecsci.2012.04.012
- Xu, R. and Wu, Y. (2007), "Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko's beam theory", Int. J. Mech. Sci., 49(10), 1139-1155. https://doi.org/10.1016/j.ijmecsci.2007.02.006
- Yang, X. and He, G. (2014), "General analytical method for composite beams' bending using Reddy's higher order beam theory", C. J. S. M., 35(2), 199-208.
- Zona, A. and Ranzi, G. (2011), "Finite element models for nonlinear analysis of steel-concrete composite beams with partial interaction in combined bending and shear", Finite Elem. Anal. Des., 47(2), 98-118. https://doi.org/10.1016/j.finel.2010.09.006
Cited by
- Absolute effective elastic constants of composite materials vol.57, pp.5, 2016, https://doi.org/10.12989/sem.2016.57.5.897
- Dynamic analysis of partial-interaction Kant composite beams by weak-form quadrature element method pp.1432-0681, 2018, https://doi.org/10.1007/s00419-018-1443-1