참고문헌
- Anandrao, K.S., Gupta, R.K., Ramchandran, P. and Rao, G.V. (2012), "Non-linear free vibrations and post-buckling analysis of shear flexible functionally graded beams", Struct. Eng. Mech., Int. J., 44(3) , 339-361. https://doi.org/10.12989/sem.2012.44.3.339
- Atmane, H.A., Tounsi, A., Ziane, N. and Mechab, I. (2011), "Mathematical solution for free vibration of sigmoid functionally graded beams with varying cross-section", Steel Compos. Struct., Int. J., 11(6), 489-504. https://doi.org/10.12989/scs.2011.11.6.489
- ANSYS (1997), Swanson Analysis Systems, Swanson J. ANSYS 5.4, USA.
- Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007
- Chakraborty, A. and Gopalakrishnan, S. (2003), "A spectrally formulated finite element for wave propagation analysis in functionally graded beams", Int. J. Solid Struct., 40(10), 2421-2448. https://doi.org/10.1016/S0020-7683(03)00029-5
- Chakraborty, A., Gopalakrishnan, S. and Reddy, J.N. (2003), "A new beam finite element for the analysis of functionally graded materials", Int. J. Mech. Sci., 45(3), 519-539. https://doi.org/10.1016/S0020-7403(03)00058-4
- Ching, H.K. and Yen, S.C. (2005), "Meshless local Petrov-Galerkin analysis for 2D functionally graded elastic solids under mechanical and thermal loads", J. Compos. Part B: Eng., 36(3), 223-240. https://doi.org/10.1016/j.compositesb.2004.09.007
- Ching, H.K. and Yen, S.C. (2006), "Transient thermoelastic deformations of 2D functionally graded beams under nonuniformly convective heat supply", Compos. Struct., 73, 381-393. https://doi.org/10.1016/j.compstruct.2005.02.021
- Darilmaz, K. (2011), "Influence of aspect ratio and fibre orientation on the stability of simply supported orthotropic skew plates", Steel Compos. Struct., Int. J., 11(5), 359-374. https://doi.org/10.12989/scs.2011.11.5.359
- Darilmaz, K. (2012), "Analysis of sandwich plates: A three-dimensional assumed stress hybrid finite element", J. Sandw. Struct. Mater., 14(4), 487-501. https://doi.org/10.1177/1099636212443916
- Kapuria, S., Bhattacharyya, M. and Kumar, A.N. (2008), "Bending and free vibration response of layered functionally graded beams: a theoretical model and its experimental validation", Compos. Struct., 82(3), 390-402. https://doi.org/10.1016/j.compstruct.2007.01.019
- Kim, J. and Paulino, G.H. (2002), "Finite element evaluation of mixed mode stress intensity factors in functionally graded materials", Int. J. Numer. Meth. Eng., 53(8), 1903-1935. https://doi.org/10.1002/nme.364
- Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4-5), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056
- Li, S.R. and Batra, R.C. (2013), "Relations between buckling loads of functionally graded Timoshenko and homogeneous Euler-Bernoulli beams", Compos. Struct., 95, 5-9. https://doi.org/10.1016/j.compstruct.2012.07.027
- Pian, T.H.H. and Chen, D.P. (1983), "On the suppression of zero energy deformation modes", Int. J. Numer. Meth. Eng., 19(12), 1741-1752. https://doi.org/10.1002/nme.1620191202
- Pradhan, K.K. and Chakraverty, S. (2013), "Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method", Compos.: Part B, 51, 175-184. https://doi.org/10.1016/j.compositesb.2013.02.027
- Qian, L.F. and Ching, H.K. (2004), "Static and dynamic analysis of 2D functionally graded elasticity by using meshless local Petrov-Galerkin method", J. Chinese Inst. Eng., 27, 491-503. https://doi.org/10.1080/02533839.2004.9670899
- Sankar, B.V. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Technol., 61(5), 689-696. https://doi.org/10.1016/S0266-3538(01)00007-0
- Simsek, M. and Kocaturk, T. (2009), "Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load", Compos. Struct., 90(4), 465-473. https://doi.org/10.1016/j.compstruct.2009.04.024
- Tajalli, S.A., Rahaeifard M., Kahrobaiyan, M.H., Movahhedy, M.R., Akbari, J. and Ahmadian, M.T. (2013), "Mechanical behavior analysis of size-dependent micro-scaled functionally graded Timoshenko beams by strain gradient elasticity theory", Compos. Struct., 102, 72-80. https://doi.org/10.1016/j.compstruct.2013.03.001
- Wakashima, K., Hirano, T. and Niino, M. (1990), "Space applications of advanced structural materials", ESA SP-303: 97.
- Xiang, H.J. and Yang, J. (2008), "Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction", J. Compos.: Part B., 39(2), 292-303. https://doi.org/10.1016/j.compositesb.2007.01.005
- Yang, J. and Chen, Y. (2008), "Free vibration and buckling analyses of functionally graded beams with edge cracks", Compos. Struct., 83(1), 48-60. https://doi.org/10.1016/j.compstruct.2007.03.006
- Yang, J., Chen, Y., Xiang, Y. and Jia, X.L. (2008), "Free and forced vibration of cracked inhomogeneous beams under an axial force and a moving load", J. Sound Vib., 312(1-2), 166-181. https://doi.org/10.1016/j.jsv.2007.10.034
- Ying, J., Lue, C.F. and Chen, W.Q. (2008), "Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations", Compos. Struct., 84(3), 209-219. https://doi.org/10.1016/j.compstruct.2007.07.004
- Zhong, Z. and Yu, T. (2007), "Analytical solution of a cantilever functionally graded beam", Compos. Sci. Technol., 67(3-4), 481-488. https://doi.org/10.1016/j.compscitech.2006.08.023
피인용 문헌
- A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates vol.184, 2018, https://doi.org/10.1016/j.compstruct.2017.10.047
- Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory vol.10, pp.3, 2016, https://doi.org/10.12989/gae.2016.10.3.357
- Buckling analysis of functionally graded material grid systems vol.54, pp.5, 2015, https://doi.org/10.12989/sem.2015.54.5.877
- An efficient and simple shear deformation theory for free vibration of functionally graded rectangular plates on Winkler-Pasternak elastic foundations vol.22, pp.3, 2016, https://doi.org/10.12989/was.2016.22.3.329
- Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
- Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory vol.18, pp.4, 2016, https://doi.org/10.12989/sss.2016.18.4.755
- An efficient shear deformation theory for wave propagation of functionally graded material plates vol.57, pp.5, 2016, https://doi.org/10.12989/sem.2016.57.5.837
- Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept vol.20, pp.5, 2016, https://doi.org/10.12989/scs.2016.20.5.963
- Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.617
- A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates vol.22, pp.2, 2016, https://doi.org/10.12989/scs.2016.22.2.257
- A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations vol.11, pp.2, 2016, https://doi.org/10.12989/gae.2016.11.2.289
- Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation vol.22, pp.1, 2016, https://doi.org/10.12989/scs.2016.22.1.091
- Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory vol.22, pp.4, 2016, https://doi.org/10.12989/was.2016.22.4.429
- A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates vol.22, pp.3, 2016, https://doi.org/10.12989/scs.2016.22.3.473
- Exact natural frequencies and buckling load of functionally graded material tapered beam-columns considering semi-rigid connections vol.24, pp.9, 2018, https://doi.org/10.1177/1077546316668932
- A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation vol.12, pp.1, 2015, https://doi.org/10.12989/gae.2017.12.1.009
- Non-linear study of mode II delamination fracture in functionally graded beams vol.23, pp.3, 2015, https://doi.org/10.12989/scs.2017.23.3.263
- A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates vol.64, pp.4, 2015, https://doi.org/10.12989/sem.2017.64.4.391
- A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations vol.25, pp.6, 2015, https://doi.org/10.12989/scs.2017.25.6.717
- A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory vol.21, pp.4, 2015, https://doi.org/10.12989/sss.2018.21.4.397
- A novel four-unknown quasi-3D shear deformation theory for functionally graded plates vol.27, pp.5, 2015, https://doi.org/10.12989/scs.2018.27.5.599
- A new plate model for vibration response of advanced composite plates in thermal environment vol.67, pp.4, 2015, https://doi.org/10.12989/sem.2018.67.4.369
- A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis vol.25, pp.1, 2020, https://doi.org/10.12989/cac.2020.25.1.037
- Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory vol.25, pp.3, 2020, https://doi.org/10.12989/cac.2020.25.3.225
- An inclined FGM beam under a moving mass considering Coriolis and centrifugal accelerations vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.061
- A novel hyperbolic plate theory including stretching effect for free vibration analysis of advanced composite plates in thermal environments vol.75, pp.2, 2020, https://doi.org/10.12989/sem.2020.75.2.193
- Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.051