DOI QR코드

DOI QR Code

Vibration analysis of functionally graded material (FGM) grid systems

  • Darilmaz, Kutlu (Istanbul Technical University, Civil Engineering Department)
  • Received : 2013.12.17
  • Accepted : 2014.07.27
  • Published : 2015.02.25

Abstract

The paper considers the free vibration analysis of FGM grid systems. Up to now, very little work has been done on this type of system and the paper aspires to fill this gap. Based on the hybrid-stress finite element formulation free vibration solutions for FGM grid systems of various aspect ratios, different types of gradations functions, and support conditions are determined. The tabulation of these results, not available thus far, should be useful to designers and researchers who may use them.

Keywords

References

  1. Anandrao, K.S., Gupta, R.K., Ramchandran, P. and Rao, G.V. (2012), "Non-linear free vibrations and post-buckling analysis of shear flexible functionally graded beams", Struct. Eng. Mech., Int. J., 44(3) , 339-361. https://doi.org/10.12989/sem.2012.44.3.339
  2. Atmane, H.A., Tounsi, A., Ziane, N. and Mechab, I. (2011), "Mathematical solution for free vibration of sigmoid functionally graded beams with varying cross-section", Steel Compos. Struct., Int. J., 11(6), 489-504. https://doi.org/10.12989/scs.2011.11.6.489
  3. ANSYS (1997), Swanson Analysis Systems, Swanson J. ANSYS 5.4, USA.
  4. Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007
  5. Chakraborty, A. and Gopalakrishnan, S. (2003), "A spectrally formulated finite element for wave propagation analysis in functionally graded beams", Int. J. Solid Struct., 40(10), 2421-2448. https://doi.org/10.1016/S0020-7683(03)00029-5
  6. Chakraborty, A., Gopalakrishnan, S. and Reddy, J.N. (2003), "A new beam finite element for the analysis of functionally graded materials", Int. J. Mech. Sci., 45(3), 519-539. https://doi.org/10.1016/S0020-7403(03)00058-4
  7. Ching, H.K. and Yen, S.C. (2005), "Meshless local Petrov-Galerkin analysis for 2D functionally graded elastic solids under mechanical and thermal loads", J. Compos. Part B: Eng., 36(3), 223-240. https://doi.org/10.1016/j.compositesb.2004.09.007
  8. Ching, H.K. and Yen, S.C. (2006), "Transient thermoelastic deformations of 2D functionally graded beams under nonuniformly convective heat supply", Compos. Struct., 73, 381-393. https://doi.org/10.1016/j.compstruct.2005.02.021
  9. Darilmaz, K. (2011), "Influence of aspect ratio and fibre orientation on the stability of simply supported orthotropic skew plates", Steel Compos. Struct., Int. J., 11(5), 359-374. https://doi.org/10.12989/scs.2011.11.5.359
  10. Darilmaz, K. (2012), "Analysis of sandwich plates: A three-dimensional assumed stress hybrid finite element", J. Sandw. Struct. Mater., 14(4), 487-501. https://doi.org/10.1177/1099636212443916
  11. Kapuria, S., Bhattacharyya, M. and Kumar, A.N. (2008), "Bending and free vibration response of layered functionally graded beams: a theoretical model and its experimental validation", Compos. Struct., 82(3), 390-402. https://doi.org/10.1016/j.compstruct.2007.01.019
  12. Kim, J. and Paulino, G.H. (2002), "Finite element evaluation of mixed mode stress intensity factors in functionally graded materials", Int. J. Numer. Meth. Eng., 53(8), 1903-1935. https://doi.org/10.1002/nme.364
  13. Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4-5), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056
  14. Li, S.R. and Batra, R.C. (2013), "Relations between buckling loads of functionally graded Timoshenko and homogeneous Euler-Bernoulli beams", Compos. Struct., 95, 5-9. https://doi.org/10.1016/j.compstruct.2012.07.027
  15. Pian, T.H.H. and Chen, D.P. (1983), "On the suppression of zero energy deformation modes", Int. J. Numer. Meth. Eng., 19(12), 1741-1752. https://doi.org/10.1002/nme.1620191202
  16. Pradhan, K.K. and Chakraverty, S. (2013), "Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method", Compos.: Part B, 51, 175-184. https://doi.org/10.1016/j.compositesb.2013.02.027
  17. Qian, L.F. and Ching, H.K. (2004), "Static and dynamic analysis of 2D functionally graded elasticity by using meshless local Petrov-Galerkin method", J. Chinese Inst. Eng., 27, 491-503. https://doi.org/10.1080/02533839.2004.9670899
  18. Sankar, B.V. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Technol., 61(5), 689-696. https://doi.org/10.1016/S0266-3538(01)00007-0
  19. Simsek, M. and Kocaturk, T. (2009), "Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load", Compos. Struct., 90(4), 465-473. https://doi.org/10.1016/j.compstruct.2009.04.024
  20. Tajalli, S.A., Rahaeifard M., Kahrobaiyan, M.H., Movahhedy, M.R., Akbari, J. and Ahmadian, M.T. (2013), "Mechanical behavior analysis of size-dependent micro-scaled functionally graded Timoshenko beams by strain gradient elasticity theory", Compos. Struct., 102, 72-80. https://doi.org/10.1016/j.compstruct.2013.03.001
  21. Wakashima, K., Hirano, T. and Niino, M. (1990), "Space applications of advanced structural materials", ESA SP-303: 97.
  22. Xiang, H.J. and Yang, J. (2008), "Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction", J. Compos.: Part B., 39(2), 292-303. https://doi.org/10.1016/j.compositesb.2007.01.005
  23. Yang, J. and Chen, Y. (2008), "Free vibration and buckling analyses of functionally graded beams with edge cracks", Compos. Struct., 83(1), 48-60. https://doi.org/10.1016/j.compstruct.2007.03.006
  24. Yang, J., Chen, Y., Xiang, Y. and Jia, X.L. (2008), "Free and forced vibration of cracked inhomogeneous beams under an axial force and a moving load", J. Sound Vib., 312(1-2), 166-181. https://doi.org/10.1016/j.jsv.2007.10.034
  25. Ying, J., Lue, C.F. and Chen, W.Q. (2008), "Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations", Compos. Struct., 84(3), 209-219. https://doi.org/10.1016/j.compstruct.2007.07.004
  26. Zhong, Z. and Yu, T. (2007), "Analytical solution of a cantilever functionally graded beam", Compos. Sci. Technol., 67(3-4), 481-488. https://doi.org/10.1016/j.compscitech.2006.08.023

Cited by

  1. A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates vol.184, 2018, https://doi.org/10.1016/j.compstruct.2017.10.047
  2. Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory vol.10, pp.3, 2016, https://doi.org/10.12989/gae.2016.10.3.357
  3. Buckling analysis of functionally graded material grid systems vol.54, pp.5, 2015, https://doi.org/10.12989/sem.2015.54.5.877
  4. An efficient and simple shear deformation theory for free vibration of functionally graded rectangular plates on Winkler-Pasternak elastic foundations vol.22, pp.3, 2016, https://doi.org/10.12989/was.2016.22.3.329
  5. Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
  6. Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory vol.18, pp.4, 2016, https://doi.org/10.12989/sss.2016.18.4.755
  7. An efficient shear deformation theory for wave propagation of functionally graded material plates vol.57, pp.5, 2016, https://doi.org/10.12989/sem.2016.57.5.837
  8. Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept vol.20, pp.5, 2016, https://doi.org/10.12989/scs.2016.20.5.963
  9. Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.617
  10. A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates vol.22, pp.2, 2016, https://doi.org/10.12989/scs.2016.22.2.257
  11. A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations vol.11, pp.2, 2016, https://doi.org/10.12989/gae.2016.11.2.289
  12. Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation vol.22, pp.1, 2016, https://doi.org/10.12989/scs.2016.22.1.091
  13. Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory vol.22, pp.4, 2016, https://doi.org/10.12989/was.2016.22.4.429
  14. A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates vol.22, pp.3, 2016, https://doi.org/10.12989/scs.2016.22.3.473
  15. Exact natural frequencies and buckling load of functionally graded material tapered beam-columns considering semi-rigid connections vol.24, pp.9, 2018, https://doi.org/10.1177/1077546316668932
  16. A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation vol.12, pp.1, 2015, https://doi.org/10.12989/gae.2017.12.1.009
  17. Non-linear study of mode II delamination fracture in functionally graded beams vol.23, pp.3, 2015, https://doi.org/10.12989/scs.2017.23.3.263
  18. A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates vol.64, pp.4, 2015, https://doi.org/10.12989/sem.2017.64.4.391
  19. A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations vol.25, pp.6, 2015, https://doi.org/10.12989/scs.2017.25.6.717
  20. A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory vol.21, pp.4, 2015, https://doi.org/10.12989/sss.2018.21.4.397
  21. A novel four-unknown quasi-3D shear deformation theory for functionally graded plates vol.27, pp.5, 2015, https://doi.org/10.12989/scs.2018.27.5.599
  22. A new plate model for vibration response of advanced composite plates in thermal environment vol.67, pp.4, 2015, https://doi.org/10.12989/sem.2018.67.4.369
  23. A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis vol.25, pp.1, 2020, https://doi.org/10.12989/cac.2020.25.1.037
  24. Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory vol.25, pp.3, 2020, https://doi.org/10.12989/cac.2020.25.3.225
  25. An inclined FGM beam under a moving mass considering Coriolis and centrifugal accelerations vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.061
  26. A novel hyperbolic plate theory including stretching effect for free vibration analysis of advanced composite plates in thermal environments vol.75, pp.2, 2020, https://doi.org/10.12989/sem.2020.75.2.193
  27. Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.051